Магматичний океан Місяця — це шар розплавленої породи, який, за теорією, був присутній на поверхні Місяця. Магматичний океан Місяця, ймовірно, був присутній на Місяці з моменту формування Місяця (приблизно 4,5 або 4,4 мільярда років тому) до десятків або сотень мільйонів років після цього часу. Це термодинамічний наслідок відносно швидкого формування Місяця після гігантського удару між протоземлею та іншим планетарним тілом. У міру того, як Місяць об'єднався з уламків від гігантського удару, гравітаційна потенційна енергія перетворилася на теплову. Через швидку акрецію Місяця (приблизно від місяця до року), теплова енергія була захоплена, оскільки не було достатнього часу для теплового випромінювання енергії через місячну поверхню. Подальша термохімічна еволюція океану місячної магми пояснює переважно анортозитову кору Місяця, [en] та матеріал KREEP.
Теорія магматичного океану Місяця спочатку була запропонована двома групами в 1970 році після аналізу уламків анортозитних порід, знайдених у колекції зразків Аполлона-11. Вуд та ін. використовували фрагменти масової проби 10085 для своїх аналізів. Залізисті анортозитові породи, знайдені під час програми «Аполлон», складаються в основному (понад 90 %) з мінералу плагіоклазу. Більш конкретно, залізисті анортозитові породи, знайдені на Місяці, складаються з кальцієвого (Ca) кінцевого члена плагіоклазу (тобто анортиту). Це свідчить про те, що принаймні верхні шари Місяця були розплавлені в минулому через чистоту місячних анортозитів і той факт, що анортит зазвичай має високу температуру кристалізації.
Початковий стан
При розгляді початкового стану океану магми Місяця є три важливі параметри: хімічний склад, глибина та температура. Ці три параметри значною мірою визначають термохімічну еволюцію. Для океану магми Місяця існує невизначеність, пов'язана з кожною із цих початкових умов. Типовий початковий хімічний склад становить 47,1 % SiO2, 33,1 % MgO, 12,0 % FeO, 4,0 % Al2O3 і 3,0 % CaO (з незначним вмістом інших молекул), а також початкова глибина 1000 км і базальна температура 1900 К.
Початковий хімічний склад і глибина
Початковий хімічний склад океану магми Місяця оцінюється на основі хімії місячних зразків, а також хімічного складу та товщини поточної місячної кори. Для цілей комп'ютерного моделювання початковий хімічний склад зазвичай визначається масовими відсотками на основі системи основних молекул, таких як SiO2, MgO, FeO, Al2O3 і CaO. Сім прикладів початкового хімічного складу океану місячної магми з літератури показані на малюнку праворуч. Ці композиції загалом подібні до складу мантії Землі з основною відмінністю в тому, що деякі (наприклад, повний місяць Тейлора) або не містять (наприклад, первісна верхня мантія Місяця) [en] елементів.
Передбачувана початкова глибина океану магми Місяця коливається від 100 км до радіуса Місяця.
Послідовність кристалізації
Точна послідовність мінералів, які кристалізуються з океану магми Місяця, залежить від початкового стану океану магми Місяця (а саме хімічного складу, глибини та температури). Відповідно до ідеалізованої серії реакцій Боуена, очікується, що спочатку кристалізується олівін, а потім ортопироксен. Ці мінерали щільніші за навколишню магму і тому опускаються на дно океану місячної магми. Таким чином, спочатку очікується, що океан місячної магми затвердіє знизу вгору. Після кристалізації приблизно 80 % океану місячної магми мінерал плагіоклаз кристалізується разом з іншими мінералами. Скелі, які в основному складаються з плагіоклазу (тобто анортозиту), утворюються та плавають до поверхні Місяця, утворюючи первісну кору Місяця.
Тривалість
Океан магми Місяця міг існувати від десятків до сотень мільйонів років після утворення Місяця. За оцінками, Місяць утворився між 52 і 152 мільйонами років після багатих кальцієм і алюмінієм включень, найдавніших відомих твердих тіл у Сонячній системі, які служать проміжною ланкою для його віку 4,567 млрд років тому. Точний час утворення місячного океану магми дещо невизначений.
Кінцеві точки можуть бути вказані віком зразка 60025 залізистого анортозиту (4,360±0,003 млрд років) і розрахунковим віком ur-KREEP (4,368±0,029 млрд років). Якби Місяць утворився рано (тобто через 52 мільйони років після утворення Сонячної системи) і обидва зразки вказували б на повну кристалізацію океану місячної магми, тоді океан місячної магми проіснував би приблизно 155 мільйонів років. У цьому випадку комп'ютерні моделі показують, що для продовження кристалізації океану місячної магми потрібне одне або кілька джерел тепла (наприклад, приливне нагрівання).
Якщо Місяць утворився пізно (тобто через 152 мільйони років після утворення Сонячної системи), то, знову ж таки, використовуючи вік зразка залізистого анортозиту 60025 і розрахунковий вік ur-KREEP, магматичний океан Місяця існував би приблизно 55 мільйонів років. Це означає, що магматичний океан Місяця не був подовжений одним або кількома додатковими джерелами тепла.
У минулому різницю у віці між найстарішими та наймолодшими зразками залізистого анортозиту використовували для визначення тривалості магматичного океану Місяця. Це було проблематично через великі похибки віку вибірки та через те, що деякі віки вибірки були скинуті ударами. Наприклад, найстарішим зразком залізистого анортозиту є 67016 з встановленим за [en] віком 4,56±0,07 млрд а наймолодшим є 62236 з встановленим за Sm-Nd віком 4,29±0,06 млрд. Різниця між цими віками становить 270 мільйонів років. Це знову означало б, що магматичний океан Місяця мав додаткове джерело тепла, наприклад, припливне нагрівання.
Аналіз цирконів у зразках Аполлона-14 показує, що місячна кора диференціювалася 4,51±0,01 мільярда років тому, що вказує на формування Місяця через 50 мільйонів років після початку Сонячної системи.
Спростовні докази
Однією з альтернативних моделей до моделі магматичного океану Місяця є модель .
Примітки
- Touboul, Mathieu; Kleine, Thorsten; Bourdon, Bernard; Palme, Herbert; Wieler, Rainer (February 2009). Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean. Icarus. 199 (2): 245—249. Bibcode:2009Icar..199..245T. doi:10.1016/j.icarus.2008.11.018. ISSN 0019-1035.
- Ida, Shigeru; ; Stewart, Glen R. (September 1997). Lunar accretion from an impact-generated disk. Nature. 389 (6649): 353—357. Bibcode:1997Natur.389..353I. doi:10.1038/38669. ISSN 0028-0836.
- Kokubo, E (December 2000). Evolution of a Circumterrestrial Disk and Formation of a Single Moon. Icarus. 148 (2): 419—436. Bibcode:2000Icar..148..419K. doi:10.1006/icar.2000.6496.
- Takeda, Takaaki; Ida, Shigeru (10 жовтня 2001). Angular Momentum Transfer in a Protolunar Disk. The Astrophysical Journal. 560 (1): 514—533. arXiv:astro-ph/0108133. Bibcode:2001ApJ...560..514T. doi:10.1086/322406. ISSN 0004-637X.
- Smith, J. V.; Anderson, A. T.; Newton, R. C.; Olsen, E. J.; Wyllie, P. J. (July 1970). A Petrologic Model for the Moon Based on Petrogenesis, Experimental Petrology, and Physical Properties. The Journal of Geology. 78 (4): 381—405. Bibcode:1970JG.....78..381S. doi:10.1086/627537. ISSN 0022-1376.
- Wood, J. A.; Dickey, J. S.; Marvin, U. B.; Powell, B. N. (30 січня 1970). Lunar Anorthosites. Science. 167 (3918): 602—604. Bibcode:1970Sci...167..602W. doi:10.1126/science.167.3918.602. ISSN 0036-8075. PMID 17781512.
- Apollo Sample Description. curator.jsc.nasa.gov. Процитовано 29 вересня 2019.
- PSRD: The Oldest Moon Rocks. www.psrd.hawaii.edu. Процитовано 27 вересня 2019.
- Dowty, Eric; Prinz, Martin; Keil, Klaus (November 1974). Ferroan anorthosite: A widespread and distinctive lunar rock type. Earth and Planetary Science Letters. 24 (1): 15—25. Bibcode:1974E&PSL..24...15D. doi:10.1016/0012-821x(74)90003-x. ISSN 0012-821X.
- Reynolds, Stephen J. (12 січня 2015). Exploring geology (вид. Fourth). New York, NY. с. 123. ISBN . OCLC 892304874.
- Taylor, Stuart (1982). Planetary Science: A Lunar Perspective. Lunar and Planetary Institute.
- Elardo, Stephen M.; Draper, David S.; Shearer, Charles K. (June 2011). Lunar Magma Ocean crystallization revisited: Bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochimica et Cosmochimica Acta. 75 (11): 3024—3045. Bibcode:2011GeCoA..75.3024E. doi:10.1016/j.gca.2011.02.033. ISSN 0016-7037.
- O'Neill, H.St.C (April 1991). The origin of the moon and the early history of the earth—A chemical model. Part 1: The moon. Geochimica et Cosmochimica Acta. 55 (4): 1135—1157. Bibcode:1991GeCoA..55.1135O. doi:10.1016/0016-7037(91)90168-5. ISSN 0016-7037.
- Schwinger, S.; Breuer, D. (1 грудня 2018). Modeling the Thermochemical Evolution of the Lunar Magma Ocean using Igneous Crystallization Programs. AGU Fall Meeting Abstracts. 31: P31G—3778. Bibcode:2018AGUFM.P31G3778S.
- Longhi, John (December 2006). Petrogenesis of picritic mare magmas: Constraints on the extent of early lunar differentiation. Geochimica et Cosmochimica Acta. 70 (24): 5919—5934. Bibcode:2006GeCoA..70.5919L. doi:10.1016/j.gca.2006.09.023. ISSN 0016-7037.
- Elkins-Tanton, Linda T.; Burgess, Seth; Yin, Qing-Zhu (April 2011). The lunar magma ocean: Reconciling the solidification process with lunar petrology and geochronology. Earth and Planetary Science Letters. 304 (3–4): 326—336. Bibcode:2011E&PSL.304..326E. doi:10.1016/j.epsl.2011.02.004. ISSN 0012-821X.
- Morgan, John W.; Hertogen, Jan; Anders, Edward (June 1978). The moon: Composition determined by nebular processes. The Moon and the Planets. 18 (4): 465—478. doi:10.1007/bf00897296. ISSN 0165-0807.
- Ringwood, A. E.; Kesson, S. E. (1 квітня 1976). A dynamic model for mare basalt petrogenesis. Lunar and Planetary Science Conference Proceedings. 7: 1697—1722. Bibcode:1976LPSC....7.1697R.
- Warren, Paul H. (30 березня 1986). Anorthosite assimilation and the origin of the Mg/Fe-related bimodality of pristine moon rocks: Support for the magmasphere hypothesis. Journal of Geophysical Research: Solid Earth. 91 (B4): 331—343. Bibcode:1986JGR....91D.331W. doi:10.1029/jb091ib04p0d331. ISSN 0148-0227.
- Andrews-Hanna, J. C.; Asmar, S. W.; Head, J. W.; Kiefer, W. S.; Konopliv, A. S.; Lemoine, F. G.; Matsuyama, I.; Mazarico, E.; McGovern, P. J. (5 грудня 2012). Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry. Science. 339 (6120): 675—678. doi:10.1126/science.1231753. ISSN 0036-8075. PMID 23223393.
- Rapp, J. F.; Draper, D. S. (16 квітня 2018). Fractional crystallization of the lunar magma ocean: Updating the dominant paradigm. Meteoritics & Planetary Science. 53 (7): 1432—1455. Bibcode:2018M&PS...53.1432R. doi:10.1111/maps.13086. ISSN 1086-9379.
- Solomon, S. C.; Chaiken, J. (1 квітня 1976). Thermal expansion and thermal stress in the moon and terrestrial planets - Clues to early thermal history. Lunar and Planetary Science Conference Proceedings. 7: 3229—3243. Bibcode:1976LPSC....7.3229S.
- Borg, Lars E.; Gaffney, Amy M.; Shearer, Charles K. (2015). A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteoritics & Planetary Science. 50 (4): 715—732. Bibcode:2015M&PS...50..715B. doi:10.1111/maps.12373. ISSN 1945-5100. 1249132.
- Chen, Erinna M.A.; Nimmo, Francis (September 2016). Tidal dissipation in the lunar magma ocean and its effect on the early evolution of the Earth–Moon system. Icarus. 275: 132—142. Bibcode:2016Icar..275..132C. doi:10.1016/j.icarus.2016.04.012. ISSN 0019-1035.
- Perera, Viranga; Jackson, Alan P.; Elkins-Tanton, Linda T.; Asphaug, Erik (May 2018). Effect of Reimpacting Debris on the Solidification of the Lunar Magma Ocean. Journal of Geophysical Research: Planets. 123 (5): 1168—1191. arXiv:1804.04772. Bibcode:2018JGRE..123.1168P. doi:10.1029/2017je005512. ISSN 2169-9097.
{{}}
:|hdl-access=
вимагає|hdl=
() - Alibert, Chantal; Norman, Marc D.; McCulloch, Malcolm T. (July 1994). An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochimica et Cosmochimica Acta. 58 (13): 2921—2926. Bibcode:1994GeCoA..58.2921A. doi:10.1016/0016-7037(94)90125-2. ISSN 0016-7037.
- Borg, Lars; Norman, Marc; Nyquist, Larry; Bogard, Don; Snyder, Greg; Taylor, Larry; Lindstrom, Marilyn (October 1999). Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth-element-depleted source. Geochimica et Cosmochimica Acta. 63 (17): 2679—2691. Bibcode:1999GeCoA..63.2679B. doi:10.1016/s0016-7037(99)00130-1. ISSN 0016-7037.
- Barboni et al. «Early formation of the Moon 4.51 billion years ago.» Science Advances. Vol 3. Issue 1. January, 2017. https://doi.org/10.1126/sciadv.1602365
- Gross, J.; Treiman, A. H.; Mercer, C. N. M. (March 2012). Sinking the Lunar Magma Ocean: New Evidence from Meteorites and the Return of Serial Magmatism. Lunar and Planetary Science Conference (1659): 2306. Bibcode:2012LPI....43.2306G.
- Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N. (February 2014). Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust. Earth and Planetary Science Letters. 388: 318—328. Bibcode:2014E&PSL.388..318G. doi:10.1016/j.epsl.2013.12.006. ISSN 0012-821X.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Magmatichnij okean Misyacya ce shar rozplavlenoyi porodi yakij za teoriyeyu buv prisutnij na poverhni Misyacya Magmatichnij okean Misyacya jmovirno buv prisutnij na Misyaci z momentu formuvannya Misyacya priblizno 4 5 abo 4 4 milyarda rokiv tomu do desyatkiv abo soten miljoniv rokiv pislya cogo chasu Ce termodinamichnij naslidok vidnosno shvidkogo formuvannya Misyacya pislya gigantskogo udaru mizh protozemleyu ta inshim planetarnim tilom U miru togo yak Misyac ob yednavsya z ulamkiv vid gigantskogo udaru gravitacijna potencijna energiya peretvorilasya na teplovu Cherez shvidku akreciyu Misyacya priblizno vid misyacya do roku teplova energiya bula zahoplena oskilki ne bulo dostatnogo chasu dlya teplovogo viprominyuvannya energiyi cherez misyachnu poverhnyu Podalsha termohimichna evolyuciya okeanu misyachnoyi magmi poyasnyuye perevazhno anortozitovu koru Misyacya en ta material KREEP Animaciya yaka pokazuye poperechnij pereriz okeanu misyachnoyi magmi koli vona kristalizuyetsya z chasom Pershi tverdi rechovini sho utvoryuyutsya napriklad olivin ye shilnishimi za navkolishnyu magmu tomu opuskayutsya vseredinu Pislya togo yak priblizno 80 magmatichnogo okeanu Misyacya kristalizuyetsya mensh shilni tverdi rechovini tobto plagioklaz pochinayut utvoryuvatisya ta splivati do poverhni utvoryuyuchi pervisnu koru Misyacya Teoriya magmatichnogo okeanu Misyacya spochatku bula zaproponovana dvoma grupami v 1970 roci pislya analizu ulamkiv anortozitnih porid znajdenih u kolekciyi zrazkiv Apollona 11 Vud ta in vikoristovuvali fragmenti masovoyi probi 10085 dlya svoyih analiziv Zalizisti anortozitovi porodi znajdeni pid chas programi Apollon skladayutsya v osnovnomu ponad 90 z mineralu plagioklazu Bilsh konkretno zalizisti anortozitovi porodi znajdeni na Misyaci skladayutsya z kalciyevogo Ca kincevogo chlena plagioklazu tobto anortitu Ce svidchit pro te sho prinajmni verhni shari Misyacya buli rozplavleni v minulomu cherez chistotu misyachnih anortozitiv i toj fakt sho anortit zazvichaj maye visoku temperaturu kristalizaciyi Misyachna zalizista anortozitova poroda z Apollona 16 zrazok 60025 Pochatkovij stanSim opublikovanih ocinok AG pochatkovogo himichnogo skladu magmatichnogo okeanu Misyacya pokazanih u vagovih vidsotkah Drugoryadni komponenti taki yak TiO 2 i Cr2O3 ne pokazani A Povnij misyac Tejlora TWM vid Tejlora 1982 zi zminami v Elardo ta in 2011 B O Neill 1991 zi zminami v Schwinger and Breuer 2018 C Misyachna primitivna verhnya mantiya LPUM vid Longhi 2006 zi zminami v Elardo et al 2011 D Elkins Tanton ta in 2011 E Morgan ta in 1978 F Ringvud i Kesson 1976 G Uorren 1986 Pri rozglyadi pochatkovogo stanu okeanu magmi Misyacya ye tri vazhlivi parametri himichnij sklad glibina ta temperatura Ci tri parametri znachnoyu miroyu viznachayut termohimichnu evolyuciyu Dlya okeanu magmi Misyacya isnuye neviznachenist pov yazana z kozhnoyu iz cih pochatkovih umov Tipovij pochatkovij himichnij sklad stanovit 47 1 SiO2 33 1 MgO 12 0 FeO 4 0 Al2O3 i 3 0 CaO z neznachnim vmistom inshih molekul a takozh pochatkova glibina 1000 km i bazalna temperatura 1900 K Pochatkovij himichnij sklad i glibina Pochatkovij himichnij sklad okeanu magmi Misyacya ocinyuyetsya na osnovi himiyi misyachnih zrazkiv a takozh himichnogo skladu ta tovshini potochnoyi misyachnoyi kori Dlya cilej komp yuternogo modelyuvannya pochatkovij himichnij sklad zazvichaj viznachayetsya masovimi vidsotkami na osnovi sistemi osnovnih molekul takih yak SiO2 MgO FeO Al2O3 i CaO Sim prikladiv pochatkovogo himichnogo skladu okeanu misyachnoyi magmi z literaturi pokazani na malyunku pravoruch Ci kompoziciyi zagalom podibni do skladu mantiyi Zemli z osnovnoyu vidminnistyu v tomu sho deyaki napriklad povnij misyac Tejlora abo ne mistyat napriklad pervisna verhnya mantiya Misyacya en elementiv Peredbachuvana pochatkova glibina okeanu magmi Misyacya kolivayetsya vid 100 km do radiusa Misyacya Poslidovnist kristalizaciyiTochna poslidovnist mineraliv yaki kristalizuyutsya z okeanu magmi Misyacya zalezhit vid pochatkovogo stanu okeanu magmi Misyacya a same himichnogo skladu glibini ta temperaturi Vidpovidno do idealizovanoyi seriyi reakcij Bouena ochikuyetsya sho spochatku kristalizuyetsya olivin a potim ortopiroksen Ci minerali shilnishi za navkolishnyu magmu i tomu opuskayutsya na dno okeanu misyachnoyi magmi Takim chinom spochatku ochikuyetsya sho okean misyachnoyi magmi zatverdiye znizu vgoru Pislya kristalizaciyi priblizno 80 okeanu misyachnoyi magmi mineral plagioklaz kristalizuyetsya razom z inshimi mineralami Skeli yaki v osnovnomu skladayutsya z plagioklazu tobto anortozitu utvoryuyutsya ta plavayut do poverhni Misyacya utvoryuyuchi pervisnu koru Misyacya TrivalistOkean magmi Misyacya mig isnuvati vid desyatkiv do soten miljoniv rokiv pislya utvorennya Misyacya Za ocinkami Misyac utvorivsya mizh 52 i 152 miljonami rokiv pislya bagatih kalciyem i alyuminiyem vklyuchen najdavnishih vidomih tverdih til u Sonyachnij sistemi yaki sluzhat promizhnoyu lankoyu dlya jogo viku 4 567 mlrd rokiv tomu Tochnij chas utvorennya misyachnogo okeanu magmi desho neviznachenij Kincevi tochki mozhut buti vkazani vikom zrazka 60025 zalizistogo anortozitu 4 360 0 003 mlrd rokiv i rozrahunkovim vikom ur KREEP 4 368 0 029 mlrd rokiv Yakbi Misyac utvorivsya rano tobto cherez 52 miljoni rokiv pislya utvorennya Sonyachnoyi sistemi i obidva zrazki vkazuvali b na povnu kristalizaciyu okeanu misyachnoyi magmi todi okean misyachnoyi magmi proisnuvav bi priblizno 155 miljoniv rokiv U comu vipadku komp yuterni modeli pokazuyut sho dlya prodovzhennya kristalizaciyi okeanu misyachnoyi magmi potribne odne abo kilka dzherel tepla napriklad prilivne nagrivannya Yaksho Misyac utvorivsya pizno tobto cherez 152 miljoni rokiv pislya utvorennya Sonyachnoyi sistemi to znovu zh taki vikoristovuyuchi vik zrazka zalizistogo anortozitu 60025 i rozrahunkovij vik ur KREEP magmatichnij okean Misyacya isnuvav bi priblizno 55 miljoniv rokiv Ce oznachaye sho magmatichnij okean Misyacya ne buv podovzhenij odnim abo kilkoma dodatkovimi dzherelami tepla Najnadijnishij vik zrazka zalizistogo anortozitu FAN pokazanij chervonim kvadratom smugi pohibok menshi za marker a najkrasha ocinka formuvannya pochatkovogo sharu KREEP na glibini tobto ur KREEP pokazana temnim blakitnim trikutnikom Najstarishij i najmolodshij zrazki zalizistogo anortozitu pokazani sirimi kolami U minulomu riznicyu u vici mizh najstarishimi ta najmolodshimi zrazkami zalizistogo anortozitu vikoristovuvali dlya viznachennya trivalosti magmatichnogo okeanu Misyacya Ce bulo problematichno cherez veliki pohibki viku vibirki ta cherez te sho deyaki viki vibirki buli skinuti udarami Napriklad najstarishim zrazkom zalizistogo anortozitu ye 67016 z vstanovlenim za en vikom 4 56 0 07 mlrd a najmolodshim ye 62236 z vstanovlenim za Sm Nd vikom 4 29 0 06 mlrd Riznicya mizh cimi vikami stanovit 270 miljoniv rokiv Ce znovu oznachalo b sho magmatichnij okean Misyacya mav dodatkove dzherelo tepla napriklad priplivne nagrivannya Analiz cirkoniv u zrazkah Apollona 14 pokazuye sho misyachna kora diferenciyuvalasya 4 51 0 01 milyarda rokiv tomu sho vkazuye na formuvannya Misyacya cherez 50 miljoniv rokiv pislya pochatku Sonyachnoyi sistemi Sprostovni dokaziOdniyeyu z alternativnih modelej do modeli magmatichnogo okeanu Misyacya ye model PrimitkiTouboul Mathieu Kleine Thorsten Bourdon Bernard Palme Herbert Wieler Rainer February 2009 Tungsten isotopes in ferroan anorthosites Implications for the age of the Moon and lifetime of its magma ocean Icarus 199 2 245 249 Bibcode 2009Icar 199 245T doi 10 1016 j icarus 2008 11 018 ISSN 0019 1035 Ida Shigeru Stewart Glen R September 1997 Lunar accretion from an impact generated disk Nature 389 6649 353 357 Bibcode 1997Natur 389 353I doi 10 1038 38669 ISSN 0028 0836 Kokubo E December 2000 Evolution of a Circumterrestrial Disk and Formation of a Single Moon Icarus 148 2 419 436 Bibcode 2000Icar 148 419K doi 10 1006 icar 2000 6496 Takeda Takaaki Ida Shigeru 10 zhovtnya 2001 Angular Momentum Transfer in a Protolunar Disk The Astrophysical Journal 560 1 514 533 arXiv astro ph 0108133 Bibcode 2001ApJ 560 514T doi 10 1086 322406 ISSN 0004 637X Smith J V Anderson A T Newton R C Olsen E J Wyllie P J July 1970 A Petrologic Model for the Moon Based on Petrogenesis Experimental Petrology and Physical Properties The Journal of Geology 78 4 381 405 Bibcode 1970JG 78 381S doi 10 1086 627537 ISSN 0022 1376 Wood J A Dickey J S Marvin U B Powell B N 30 sichnya 1970 Lunar Anorthosites Science 167 3918 602 604 Bibcode 1970Sci 167 602W doi 10 1126 science 167 3918 602 ISSN 0036 8075 PMID 17781512 Apollo Sample Description curator jsc nasa gov Procitovano 29 veresnya 2019 PSRD The Oldest Moon Rocks www psrd hawaii edu Procitovano 27 veresnya 2019 Dowty Eric Prinz Martin Keil Klaus November 1974 Ferroan anorthosite A widespread and distinctive lunar rock type Earth and Planetary Science Letters 24 1 15 25 Bibcode 1974E amp PSL 24 15D doi 10 1016 0012 821x 74 90003 x ISSN 0012 821X Reynolds Stephen J 12 sichnya 2015 Exploring geology vid Fourth New York NY s 123 ISBN 9780078022920 OCLC 892304874 Taylor Stuart 1982 Planetary Science A Lunar Perspective Lunar and Planetary Institute Elardo Stephen M Draper David S Shearer Charles K June 2011 Lunar Magma Ocean crystallization revisited Bulk composition early cumulate mineralogy and the source regions of the highlands Mg suite Geochimica et Cosmochimica Acta 75 11 3024 3045 Bibcode 2011GeCoA 75 3024E doi 10 1016 j gca 2011 02 033 ISSN 0016 7037 O Neill H St C April 1991 The origin of the moon and the early history of the earth A chemical model Part 1 The moon Geochimica et Cosmochimica Acta 55 4 1135 1157 Bibcode 1991GeCoA 55 1135O doi 10 1016 0016 7037 91 90168 5 ISSN 0016 7037 Schwinger S Breuer D 1 grudnya 2018 Modeling the Thermochemical Evolution of the Lunar Magma Ocean using Igneous Crystallization Programs AGU Fall Meeting Abstracts 31 P31G 3778 Bibcode 2018AGUFM P31G3778S Longhi John December 2006 Petrogenesis of picritic mare magmas Constraints on the extent of early lunar differentiation Geochimica et Cosmochimica Acta 70 24 5919 5934 Bibcode 2006GeCoA 70 5919L doi 10 1016 j gca 2006 09 023 ISSN 0016 7037 Elkins Tanton Linda T Burgess Seth Yin Qing Zhu April 2011 The lunar magma ocean Reconciling the solidification process with lunar petrology and geochronology Earth and Planetary Science Letters 304 3 4 326 336 Bibcode 2011E amp PSL 304 326E doi 10 1016 j epsl 2011 02 004 ISSN 0012 821X Morgan John W Hertogen Jan Anders Edward June 1978 The moon Composition determined by nebular processes The Moon and the Planets 18 4 465 478 doi 10 1007 bf00897296 ISSN 0165 0807 Ringwood A E Kesson S E 1 kvitnya 1976 A dynamic model for mare basalt petrogenesis Lunar and Planetary Science Conference Proceedings 7 1697 1722 Bibcode 1976LPSC 7 1697R Warren Paul H 30 bereznya 1986 Anorthosite assimilation and the origin of the Mg Fe related bimodality of pristine moon rocks Support for the magmasphere hypothesis Journal of Geophysical Research Solid Earth 91 B4 331 343 Bibcode 1986JGR 91D 331W doi 10 1029 jb091ib04p0d331 ISSN 0148 0227 Andrews Hanna J C Asmar S W Head J W Kiefer W S Konopliv A S Lemoine F G Matsuyama I Mazarico E McGovern P J 5 grudnya 2012 Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry Science 339 6120 675 678 doi 10 1126 science 1231753 ISSN 0036 8075 PMID 23223393 Rapp J F Draper D S 16 kvitnya 2018 Fractional crystallization of the lunar magma ocean Updating the dominant paradigm Meteoritics amp Planetary Science 53 7 1432 1455 Bibcode 2018M amp PS 53 1432R doi 10 1111 maps 13086 ISSN 1086 9379 Solomon S C Chaiken J 1 kvitnya 1976 Thermal expansion and thermal stress in the moon and terrestrial planets Clues to early thermal history Lunar and Planetary Science Conference Proceedings 7 3229 3243 Bibcode 1976LPSC 7 3229S Borg Lars E Gaffney Amy M Shearer Charles K 2015 A review of lunar chronology revealing a preponderance of 4 34 4 37 Ga ages Meteoritics amp Planetary Science 50 4 715 732 Bibcode 2015M amp PS 50 715B doi 10 1111 maps 12373 ISSN 1945 5100 1249132 Chen Erinna M A Nimmo Francis September 2016 Tidal dissipation in the lunar magma ocean and its effect on the early evolution of the Earth Moon system Icarus 275 132 142 Bibcode 2016Icar 275 132C doi 10 1016 j icarus 2016 04 012 ISSN 0019 1035 Perera Viranga Jackson Alan P Elkins Tanton Linda T Asphaug Erik May 2018 Effect of Reimpacting Debris on the Solidification of the Lunar Magma Ocean Journal of Geophysical Research Planets 123 5 1168 1191 arXiv 1804 04772 Bibcode 2018JGRE 123 1168P doi 10 1029 2017je005512 ISSN 2169 9097 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a hdl access vimagaye hdl dovidka Alibert Chantal Norman Marc D McCulloch Malcolm T July 1994 An ancient Sm Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016 Geochimica et Cosmochimica Acta 58 13 2921 2926 Bibcode 1994GeCoA 58 2921A doi 10 1016 0016 7037 94 90125 2 ISSN 0016 7037 Borg Lars Norman Marc Nyquist Larry Bogard Don Snyder Greg Taylor Larry Lindstrom Marilyn October 1999 Isotopic studies of ferroan anorthosite 62236 a young lunar crustal rock from a light rare earth element depleted source Geochimica et Cosmochimica Acta 63 17 2679 2691 Bibcode 1999GeCoA 63 2679B doi 10 1016 s0016 7037 99 00130 1 ISSN 0016 7037 Barboni et al Early formation of the Moon 4 51 billion years ago Science Advances Vol 3 Issue 1 January 2017 https doi org 10 1126 sciadv 1602365 Gross J Treiman A H Mercer C N M March 2012 Sinking the Lunar Magma Ocean New Evidence from Meteorites and the Return of Serial Magmatism Lunar and Planetary Science Conference 1659 2306 Bibcode 2012LPI 43 2306G Gross Juliane Treiman Allan H Mercer Celestine N February 2014 Lunar feldspathic meteorites Constraints on the geology of the lunar highlands and the origin of the lunar crust Earth and Planetary Science Letters 388 318 328 Bibcode 2014E amp PSL 388 318G doi 10 1016 j epsl 2013 12 006 ISSN 0012 821X