Зако́н нуля́ чи одиниці — твердження в теорії ймовірностей про те, що всяка остаточна подія, тобто подія настання якої визначається лише скільки завгодно віддаленими елементами послідовності незалежних випадкових подій або випадкових величин, має ймовірність нуль або одиниця.
Формулювання
Нехай дано ймовірнісний простір і визначена на ньому послідовність незалежних випадкових подій . Нехай — її . Тоді якщо , то або .
Приклад
Нехай послідовність незалежних випадкових величин. Тоді ряд
є збіжним або розбіжним майже напевно.
Див. також
Джерела
- Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
- Гнеденко Б. В. Курс теории вероятностей. — 6-е изд. — Москва : Наука, 1988. — 446 с.(рос.)
- Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Zako n nulya chi odinici tverdzhennya v teoriyi jmovirnostej pro te sho vsyaka ostatochna podiya tobto podiya nastannya yakoyi viznachayetsya lishe skilki zavgodno viddalenimi elementami poslidovnosti nezalezhnih vipadkovih podij abo vipadkovih velichin maye jmovirnist nul abo odinicya FormulyuvannyaNehaj dano jmovirnisnij prostir W F P displaystyle Omega mathcal F mathbb P i viznachena na nomu poslidovnist nezalezhnih vipadkovih podij X n n 1 displaystyle X n n 1 infty Nehaj F displaystyle mathcal F infty yiyi Todi yaksho A F displaystyle A in mathcal F infty to P A 0 displaystyle mathbb P A 0 abo P A 1 displaystyle mathbb P A 1 PrikladNehaj X n n 1 displaystyle X n n 1 infty poslidovnist nezalezhnih vipadkovih velichin Todi ryad n 1 X n displaystyle sum limits n 1 infty X n ye zbizhnim abo rozbizhnim majzhe napevno Div takozhLema Borelya Kantelli Teorema pro neskinchenih mavp DzherelaKartashov M V Imovirnist procesi statistika Kiyiv VPC Kiyivskij universitet 2007 504 s Gnedenko B V Kurs teorii veroyatnostej 6 e izd Moskva Nauka 1988 446 s ros Gihman I I Skorohod A V Yadrenko M V Teoriya veroyatnostej i matematicheskaya statistika Kiyiv Visha shkola 1988 436 s ros