Ця стаття містить правописні, лексичні, граматичні, стилістичні або інші мовні помилки, які треба виправити. |
Зада́чі тео́рії ґра́ток — це клас задач оптимізації на ґратках (тобто дискретних адитивних підгрупах, заданих на множині ). Труднощі при розв'язуванні таких задач є основою для побудови стійких криптосистем на ґратках. Для додатків в таких криптосистемах зазвичай розглядаються ґратки на векторних просторах (часто ) або вільних модулях (часто ).
Для всіх задач нижче припустимо, що нам дано (крім інших більш конкретних вхідних даних) базис для векторного простору V і норма N. Для норм зазвичай розглядається L2. Однак інші норми, такі як Lp), також розглядаються і з'являються в різних результатах. Нижче в статті означає довжину найкоротшого вектора в ґратці L, тобто :
Задачі знаходження найкоротшого вектора (ЗНВ)
У ЗНВ (англ. Shortest vector problem, SVP), для ґратки L дані базис векторного простору V і норма N (часто L2) і потрібно знайти ненульовий вектор мінімальної довжини в V за нормою N в ґратці L. Іншими словами, виходом алгоритму повинен бути ненульовий вектор v, такий, що .
В -наближеній версії ЗНВγ потрібно найти ненульовий вектор ґратці довжини, що не перевищує .
Труднощі
Тільки точна версія задачі, як відомо, є NP-важкою для рандомізованого відомості .
Для контрасту, відомо, що еквівалентна задача для рівномірних норм, є NP-важкою .
Алгоритми для евклідових норм
Для вирішення точної версії ЗНВ для евклідової норми відомі кілька різних підходів, які можна розбити на два класи — алгоритми, що вимагають суперекспоненціального часу () і пам'яті, і алгоритми, що вимагають експоненціального часу і пам'яті (), від розмірності ґратки(). У першому класі алгоритмів найбільш значимі алгоритми перерахування ґратки і алгоритми скорочення випадкових вибірок , в той час як другий клас включає ґраткову просіювання , обчислення осередків Вороного на ґратці і дискретні гаусові розподілу . Відкритою проблемою є, чи існують алгоритми, вирішальні точну ЗНВ за звичайне експоненціальне час () і вимагають пам'яті, поліноміально залежить від розмірності ґратки .
Для вирішення -наближеною версії ЗНВγ для для евклідової норми кращий відомий підхід базується на використанні редукції базису ґратки. Для великих алгоритм Ленстра — Ленстра — Ловаш (алгоритм ЛЛЛ) редукції базису ґратки може знайти рішення за поліноміальний час від розмірності ґратки. Для малих значень зазвичай використовується блоковий алгоритм Коркіна — Золотарьова (БКЗ, англ. Block Korkine-Zolotarev algorithm, BKZ), де вхід алгоритму (розмір блоку ) визначає часову складність і якість виходу — для великих аппроксимаціонних коефіцієнтам достатній малий розмір блоку і алгоритм завершується швидко. Для малих вимагається більший , щоб знайти досить короткі вектора ґратки, і алгоритм працює довше. БКЗ-алгоритм всередині використовує алгоритм точного ЗНВ як підпрограми (працює на ґратці розмірності, не перевершує ), і загальна складність тісно пов'язана з вартістю цих викликів ЗНВ в розмірності .
GapSVP
Задача полягає в розрізненні між варіантами ЗНВ, в яких відповідь не перевищує 1 або більше може бути фіксованою функцією від розмірності ґратки . Якщо заданий базис ґратки, алгоритм повинен вирішити, буде або . Подібно до інших задач із передумовою, алгоритму дозволені помилки у всіх інших випадках.
Іншою версією задачі є для деяких функцій . Входом алгоритму є базис і число . Алгоритм забезпечує, щоб всі вектори в ортогоналізації Грама — Шмідта мали довжину, не меншу 1, щоб і щоб , де — розмірність. Алгоритм повинен прийняти, якщо і відкинути, якщо . Для великих () задача еквівалентна, оскільки препроцесорний крок за допомогою алгоритму ЛЛЛ робить другу умову (а отже, ) зайвою.
Задача знаходження найближчого вектору (ЗНВ)
У ЗНВ (англ. Closest vector problem, CVP) для ґратки L дані базис векторного простору V і метрика M (часто L2), а також вектор v в V, але не обов'язково в L. Вимагається знайти вектор в L, найбільш близький до v (у міру M). У -наближеній версії ЗНВγ, треба знайти вектор ґратки на відстані, що не перевершує .
Зв'язок із ЗНВ
Задача знаходження найближчого вектору є узагальненням задачі знаходження найкоротшого вектору. Легко показати, що якщо заданий провісник для ЗНВγ (визначений нижче)можна вирішити ЗНВγ шляхом деяких запитів провісникові. Природний метод пошуку найкоротшого вектору шляхом запитів до провісника ЗНВγ, щоб знайти найближчий вектор, не працює, оскільки 0 є вектором ґратки і алгоритм, потенційно, може повернути 0.
Зведення від ЗНВγ до ЗНВγ наступне: припустимо, що входом задачі ЗНВγ є базис ґратки . Розглянемо базис буде вектором, який повернув алгоритм ЗНВ. Стверджується, що найкоротший вектор в множині є найкоротшим вектором в даній ґратці.
Труднощі
Голдрайх, Міссіансіо, Сафра і Сейферт показали, що з будь-якої складності ЗНВ витікає така ж складність для ЗНВ. Використовуючи засоби Арора, Бабаї, що перевіряється, Стерн, Свідік показали, що ЗНВ важка для апроксимації до множника , якщо тільки не . Дінур, Кіндлер, Сафра посилили це, вказавши NP-трудність з для .
Сферичне декодування
Алгоритм для ЗНВ, особливо варіант Фінці і Поста використовується, наприклад, для виявлення даних у безпровідних системах зв'язку з багатоканальним входом/багатоканальним виходом (MIMO) (для кодованих і розкодованих сигналів) . У цьому контексті він називається сферичним декодуванням.
Алгоритм був застосований в області цілочисельного дозволу неоднозначності фази такою, що несе GNSS (GPS). У цій області це називається LAMBDA-методом.
GapSVP
Ця задача подібна до задачі GapSVP. Для , входом є базис ґратки і вектор , а алгоритм повинен відповісти, яка з умов виконується існує вектор ґратки, такий, що відстань між ним і не перевершує 1. Будь-який вектор ґратки знаходиться від на відстані, більшому .
Відомі результати
Задача тривіально міститься в класі NP для будь-якого коефіцієнта апроксимації.
[en] в 1987 показав, що алгоритми з детермінованим поліноміальним часом можуть розв'язати задачу . Айтаі, Кумар, Сівакумар показали, що ймовірнісні алгоритми можуть отримати злегка більше кращий коефіцієнт апроксимації .
У 1993 Банашчик показав, що міститься в . У 2000 Голдрайх і Голдвассер показали, що поміщає задачу в класи як NP, так і . У 2005 Ааронов і Реджев показали, що для деякої константи задача з входить в .
Задача про найкоротші незалежні вектори
Якщо дані ґратки L розмірності n, алгоритм повинен видати n лінійно незалежних векторів , таких, що , де права частина складається з усіх базисів ґратки.
У -приближенній версії, якщо дані ґратки L розмірності n, алгоритм знаходить n лінійно незалежних векторів довжини , де є -м подальшим мінімумом .
Декодування з обмеженою відстанню
Це задача подібна до ЗНВ. Якщо даний вектор, такий, що його відстань від ґратки не перевершує , алгоритм повинен видати найближчий вектор ґратки.
Задача покриття ґратки радіусами
Якщо даний базис для ґратки, алгоритм повинен знайти найбільшу відстань (чи, в деяких версіях, його апроксимацію) від будь-якого вектору до ґратки.
Задача пошуку найкоротшого базису
Багато задач стають простішими, якщо вхідний базис складається з коротких векторів. Алгоритм, який вирішує задачу пошуку найкоротшого базису (ПКБ), повинен по заданому базису ґратки дати еквівалентний базис , такий, що довжина щонайдовшого вектору в настільки коротка, наскільки можливо.
Апроксимована версія задачі ПКБγ полягає в пошуку базису, щонайдовший вектор якого не перевершує по довжині в раз щонайдовшого вектору в найкоротшому базисі.
Використання в криптографії
Складність середнього випадку задач утворює базис для доведення стійкості більшості криптографічних схем. Проте експериментальні дані наштовхують на припущення, що для більшості NP-складних заданч ця властивість відсутня — вони лише важкі у гіршому разі. Для багатьох задач теорії ґраток припустило або доведено, що вони важкі в середньому, що робить їх привабливими для криптографічних схем. Проте складність у гіршому разі деяких задач теорії ґраток використовується для створення схем стійкої криптографії. Використання трудності у гіршому випадку в таких схемах поміщає їх в клас дуже небагатьох схем, які, з великою імовірністю, стійкі навіть для квантових комп'ютерів.
Наведені вище задачі теорії ґраток легко вирішуються, якщо даний «хороший» базис. Мету алгоритмів редукції базису по цьому базису ґратки видати новий базис, що полягає їх відносно коротких майже ортогональних векторів. Алгоритм Ленстри — Ленстри — Ловаша редукції базису ґратки був раннім ефективним алгоритмом для цієї задачі, який може видати зредукований базис ґратки за поліноміальний час . Цей алгоритм і його подальші поліпшення були використані для злому деяких криптографічних схем, що сформувало його статус як дуже важливий засіб в криптографії. Успіх ЛЛЛ на експериментальних даних привів до віри, що редукція базису ґратки на практиці може бути простою задачею. Проте ця віра була зруйнована, коли у кінці 1990s-х були отримані нові результати про складність задач теорії ґраток, починаючи з результатів Айтаі. У своїй засадничій роботі Айтаі показав, що ЗНВ був NP-важким і виявив деякі зв'язки між складністю у гіршому разі і складністю в середньому деяких задач теорії ґраток. Ґрунтуючись на цих результатах, Айтаі і Дворк створили криптосистему з відкритим ключем, секретність якої може бути доведена, використовуючи лише гірший випадок трудності певної версії ЗНВ, що було першим результатом по створенню захищених систем з використанням трудності у гіршому разі.
Примітки
- Ajtai, 1998, с. 10-19.
- Ajtai, 1998, с. 10 -19.
- van Emde Boas, 1981.
- Kannan та 1 983.
- Fincke, Pohst, 1985.
- Gama, Nguyen, Regev, 2010.
- Schnorr, 2003.
- Aono, Nguyen, 2017.
- Ajtai, Kumar, Sivakumar, 2001.
- Micciancio, Voulgaris, 2010.
- Becker, Ducas, Gama, Laarhoven, 2015.
- Agrell, Eriksson, Vardy, Zeger, 2002.
- Micciancio, Voulgaris, 2010a.
- Aggarwal, Dadush, Regev, Stephens-Davidowitz, 2015.
- Micciancio, 2017.
- Schnorr, 1987, с. 201-224.
- Schnorr, Euchner, 1994, с. 181-199.
- Chen, Nguyen, 2011, с. 1-20.
- Peikert, 2009, с. 333–342.
- Micciancio, Goldwasser, 2002.
- Goldreich, Micciancio, Safra, Seifert, 1999, с. 55–61.
- Arora, Babai, Stern, Sweedyk, 1997, с. 317–331.
- Dinur, Kindler, Safra, 2003, с. 205–243.
- Fincke, Pohst, 1985, с. 463–471.
- Biglieri, Calderbank, Constantinides, Goldsmith, Paulraj, Poor, 2007.
- Agrell, Eriksson, Vardy, Zeger, 2002, с. 2201–2214.
- Wang, Le-Ngoc, 2011, с. 189–200.
- Hassibi, Boyd, 1998, с. 2938–2952.
- Schnorr, 1993.
- Ajtai, Kumar, Sivakumar, 2001, с. 601–610.
- Banaszczyk, 1993, с. 625–635.
- Goldreich, Goldwasser, 1998, с. 1–9.
- Aharonov, Regev, 2005.
- Lenstra, Lenstra, Lovász, 1982, с. 515–534.
- Ajtai, 1996, с. 99–108.
- Ajtai, 1998, с. 10–19.
- Ajtai, Dwork, 1997, с. 284–293.
- Cai, 2000, с. 1–32.
Література
- Subhash Khot. Hardness of approximating the shortest vector problem in lattices // J. ACM. — 2005. — Т. 52, вип. 5. — DOI: .
- Miklós Ajtai. The shortest vector problem in L2 is NP- hard for randomized reductions // Proceedings of the thirtieth annual ACM symposium on Theory of computing. — Dallas, Texas, United States : ACM, 1998.
- Peter van Emde Boas. Another NP - complete problem and the complexity of computing short vectors in a lattice. — University of Amsterdam, Department of Mathematics, Netherlands, 1981.
- Chris Peikert. Public - key cryptosystems from the worst - case shortest vector problem: extended abstract // Proceedings of the 41st annual ACM symposium on Theory of Computing. — Bethesda, MD, USA : ACM, 2009.
- Daniele Micciancio, Shafi Goldwasser. Complexity of Lattice Problems : A Cryptographic Perspective. — 2002. — Т. 671. — (Kluwer International Series in Engineering and Computer Science) — .
- Daniele Micciancio, Shafi Goldwasser. Complexity of Lattice Problems : A Cryptographic Perspective. — Springer US, 2011. — (The Springer International Series in Engineering and Computer Science) — .
- Goldreich O., Micciancio D., Safra S., Seifert J. - p. Approximating shortest lattice vectors is not harder than approximating closest lattice vectors // Inf. Process. Lett.. — 1999. — Т. 71, вип. 2. — DOI: .
- Oded Goldreich, Shafi Goldwasser. On the limits of non - approximability of lattice problems // Proceedings of the thirtieth annual ACM symposium on Theory of computing. — Dallas, Texas, United States : ACM, 1998.
- Sanjeev Arora, László Babai, Jacques Stern, Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations // J. Comput. Syst. Sci.. — 1997. — Т. 54, вип. 2. — DOI: .
- Dinur I., Kindler G., Safra S. Approximating CVP to Within Almost - Polynomial Factors is NP - Hard // Combinatorica. — 2003. — Т. 23, вип. 2. — DOI: .
- Dinur I., Kindler G., Safra S. Approximating - CVP to within Almost - Polynomial Factors is NP - Hard // Proceedings of the 39th Annual Symposium on Foundations of Computer Science. — IEEE Computer Society, 1998. — .
- Fincke U., Pohst M. Improved Methods for Calculating Vectors of Short Length in a Lattice, Including a Complexity Analysis // Math. Comp.. — 1985. — Т. 44, вип. 170. — DOI: .
- Biglieri E., Calderbank R., Constantinides A., Goldsmith A., Paulraj A., Poor H. V. MIMO Wireless Communications. — Cambridge : Cambridge U. P, 2007.
- Ping Wang, Tho Le - Ngoc. A List Sphere Decoding Algorithm with Improved Radius Setting Strategies // Wireless Personal Communications. — 2011. — Т. 61, вип. 1. — DOI: .
- Hassibi A., Boyd S. Integer Parameter Estimation in Linear Models with Applications to GPS // IEEE Trans. Sig. Proc.. — 1998. — Т. 46, вип. 11. — DOI: .
- Miklós Ajtai, Ravi Kumar, D. Sivakumar. A sieve algorithm for the shortest lattice vector problem // Proceedings of the thirty - third annual ACM symposium on Theory of computing. — Hersonissos, Greece : ACM, 2001.
- Banaszczyk W. New bounds in some transference theorems in the geometry of numbers // Math. Ann.. — 1993. — Т. 296, вип. 1. — DOI: .
- Dorit Aharonov, Oded Regev. Lattice problems in NP coNP // J. ACM. — 2005. — Т. 52, вип. 5. — DOI: .
- Ajtai M. Generating hard instances of lattice problems // Proceedings of the twenty - eighth annual ACM symposium on Theory of computing. — Philadelphia, Pennsylvania, United States : ACM, 1996.
- Miklós Ajtai, Cynthia Dwork. A public - key cryptosystem with worst - case/average - case equivalence // Proceedings of the twenty - ninth annual ACM symposium on Theory of computing. — El Paso, Texas, United States : ACM, 1997.
- Jin - Yi Cai. The Complexity of Some Lattice Problems // Algorithmic Number Theory.Lecture Notes in Computer Science. — 2000. — Т. 1838. — DOI:
- Lenstra A. K., Lenstra H. W., Lovász L. Factoring polynomials with rational coefficients // Math. Ann.. — 1982. — Т. 261, вип. 4. — DOI: .
- Daniele Micciancio, Panagiotis Voulgaris. Faster Exponential Time Algorithms for the Shortest Vector Problem // Proceedings of the Twenty - first Annual ACM - SIAM Symposium on Discrete Algorithms. — Philadelphia, PA, USA : Society for Industrial and Applied Mathematics, 2010. — С. 1468-1480. — (SODA '10) — .
- Daniele Micciancio, Panagiotis Voulgaris. A Deterministic Single Exponential Time Algorithm for Most Lattice Problems Based on Voronoi Cell Computations // Proceedings of the Forty - second ACM Symposium on Theory of Computing. — New York, NY, USA : ACM, 2010a. — . — DOI:
- Becker A., Ducas L., Gama N., Laarhoven T. Proceedings of the Twenty - Seventh Annual ACM - SIAM Symposium on Discrete Algorithms. — Society for Industrial and Applied Mathematics, 2015. — С. 10-24. — (Proceedings) — DOI:
- Divesh Aggarwal, Daniel Dadush, Oded Regev, Noah Stephens - Davidowitz. Solving the Shortest Vector Problem in 2n Time Using Discrete Gaussian Sampling : Extended Abstract // Proceedings of the Forty - seventh Annual ACM Symposium on Theory of Computing. — New York, NY, USA : ACM, 2015. — (STOC) — . — DOI:
- Daniele Micciancio. Lattice Cryptography - Shortest Vector Problem. — 2017.
- Schnorr C. P. A hierarchy of polynomial time lattice basis reduction algorithms // Theoretical Computer Science. — 1987. — Т. 53, вип. 2. — DOI: .
- Schnorr C. P., Euchner M. Lattice basis reduction: Improved practical algorithms and solving subset sum problems // Mathematical Programming. — 1994. — Т. 66, вип. 1-3. — ISSN 0025-5610. — DOI: .
- Claus Peter Schnorr. Lattice Reduction by Random Sampling and Birthday Methods // 14 STACS. — Springer, Berlin, Heidelberg, 2003. — . — DOI:
- Yuanmi Chen, Phong Q. Nguyen. 1 Advances in Cryptology - ASIACRYPT 2011. — Springer, Berlin, Heidelberg, 2011. — DOI: .
Література для подальшого читання
- Agrell E., Eriksson T., Vardy A., Zeger K. Closest Point Search in Lattices // IEEE Trans. Inform. Theory. — 2002. — Т. 48, вип. 8. — DOI: .
- Daniele Micciancio. The Shortest Vector Problem is \u007BNP\u007D- hard to approximate to within some constant // SIAM Journal on Computing. — 2001. — Т. 30, вип. 6. — С. 2008-2035. — DOI: .
- Phong Q. Nguyen, Jacques Stern. Lattice Reduction in Cryptology : An Update // Proceedings of the 4th International Symposium on Algorithmic Number Theory. — Springer - Verlag, 2000. — С. 85-112. — .
- Ravi Kannan. Improved Algorithms for Integer Programming and Related Lattice Problems // Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing. — New York, NY, USA : ACM, 1983. — (STOC) — . — DOI:
- Nicolas Gama, Phong Q. Nguyen, Oded Regev. Lattice Enumeration Using Extreme Pruning // Advances in Cryptology - EUROCRYPT 2010. — Springer, Berlin, Heidelberg, 2010. — DOI:
- Yoshinori Aono, Phong Q. Nguyen. Random Sampling Revisited : Lattice Enumeration with Discrete Pruning // Advances in Cryptology - EUROCRYPT 2017. — Springer, Cham, 2017. — DOI:
- Daniele Micciancio, Panagiotis Voulgaris. Faster Exponential Time Algorithms for the Shortest Vector Problem // Id = 1873601.1873720 — (SODA '10)[недоступне посилання]
- Daniele Micciancio, Panagiotis Voulgaris. A Deterministic Single Exponential Time Algorithm for Most Lattice Problems Based on Voronoi Cell Computations //
- Becker A., Ducas L., Gama N., Laarhoven T. [1] з джерела 19 січня 2022
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Cya stattya mistit pravopisni leksichni gramatichni stilistichni abo inshi movni pomilki yaki treba vipraviti Vi mozhete dopomogti vdoskonaliti cyu stattyu pogodivshi yiyi iz chinnimi movnimi standartami Zada chi teo riyi gra tok ce klas zadach optimizaciyi na gratkah tobto diskretnih aditivnih pidgrupah zadanih na mnozhini R n displaystyle mathbb R n Trudnoshi pri rozv yazuvanni takih zadach ye osnovoyu dlya pobudovi stijkih kriptosistem na gratkah Dlya dodatkiv v takih kriptosistemah zazvichaj rozglyadayutsya gratki na vektornih prostorah chasto Q n displaystyle mathbb Q n abo vilnih modulyah chasto Z n displaystyle mathbb Z n Dlya vsih zadach nizhche pripustimo sho nam dano krim inshih bilsh konkretnih vhidnih danih bazis dlya vektornogo prostoru V i norma N Dlya norm zazvichaj rozglyadayetsya L2 Odnak inshi normi taki yak Lp takozh rozglyadayutsya i z yavlyayutsya v riznih rezultatah Nizhche v statti l L displaystyle lambda L oznachaye dovzhinu najkorotshogo vektora v gratci L tobto l L min v L 0 v N displaystyle lambda L min v in L setminus mathbf 0 v N Zadachi znahodzhennya najkorotshogo vektora ZNV Ilyustraciya zadachi znahodzhennya najkorotshogo vektora osnovni bazovi vektori sinij kolir korotshij vektor chervonij kolir U ZNV angl Shortest vector problem SVP dlya gratki L dani bazis vektornogo prostoru V i norma N chasto L2 i potribno znajti nenulovij vektor minimalnoyi dovzhini v V za normoyu N v gratci L Inshimi slovami vihodom algoritmu povinen buti nenulovij vektor v takij sho N v l L displaystyle N v lambda L V g displaystyle gamma nablizhenij versiyi ZNVg potribno najti nenulovij vektor gratci dovzhini sho ne perevishuye g l L displaystyle gamma lambda L Trudnoshi Tilki tochna versiya zadachi yak vidomo ye NP vazhkoyu dlya randomizovanogo vidomosti Dlya kontrastu vidomo sho ekvivalentna zadacha dlya rivnomirnih norm ye NP vazhkoyu Algoritmi dlya evklidovih norm Dlya virishennya tochnoyi versiyi ZNV dlya evklidovoyi normi vidomi kilka riznih pidhodiv yaki mozhna rozbiti na dva klasi algoritmi sho vimagayut supereksponencialnogo chasu 2 w n displaystyle 2 omega n i poly n displaystyle operatorname poly n pam yati i algoritmi sho vimagayut eksponencialnogo chasu i pam yati 2 8 n displaystyle 2 Theta n vid rozmirnosti gratki 2 8 n displaystyle 2 Theta n U pershomu klasi algoritmiv najbilsh znachimi algoritmi pererahuvannya gratki i algoritmi skorochennya vipadkovih vibirok v toj chas yak drugij klas vklyuchaye gratkovu prosiyuvannya obchislennya oseredkiv Voronogo na gratci i diskretni gausovi rozpodilu Vidkritoyu problemoyu ye chi isnuyut algoritmi virishalni tochnu ZNV za zvichajne eksponencialne chas 2 O n displaystyle 2 O n i vimagayut pam yati polinomialno zalezhit vid rozmirnosti gratki Dlya virishennya g displaystyle gamma nablizhenoyu versiyi ZNVg dlya g gt 1 displaystyle gamma gt 1 dlya evklidovoyi normi krashij vidomij pidhid bazuyetsya na vikoristanni redukciyi bazisu gratki Dlya velikih g 2 W n displaystyle gamma 2 Omega n algoritm Lenstra Lenstra Lovash algoritm LLL redukciyi bazisu gratki mozhe znajti rishennya za polinomialnij chas vid rozmirnosti gratki Dlya malih znachen g displaystyle gamma zazvichaj vikoristovuyetsya blokovij algoritm Korkina Zolotarova BKZ angl Block Korkine Zolotarev algorithm BKZ de vhid algoritmu rozmir bloku b displaystyle beta viznachaye chasovu skladnist i yakist vihodu dlya velikih approksimacionnih koeficiyentam g displaystyle gamma dostatnij malij rozmir bloku b displaystyle beta i algoritm zavershuyetsya shvidko Dlya malih g displaystyle gamma vimagayetsya bilshij b displaystyle beta shob znajti dosit korotki vektora gratki i algoritm pracyuye dovshe BKZ algoritm vseredini vikoristovuye algoritm tochnogo ZNV yak pidprogrami pracyuye na gratci rozmirnosti ne perevershuye b displaystyle beta i zagalna skladnist tisno pov yazana z vartistyu cih viklikiv ZNV v rozmirnosti b displaystyle beta GapSVPZadacha G a p S V P b displaystyle GapSVP beta polyagaye v rozriznenni mizh variantami ZNV v yakih vidpovid ne perevishuye 1 abo bilshe b displaystyle beta mozhe buti fiksovanoyu funkciyeyu vid rozmirnosti gratki n displaystyle n Yaksho zadanij bazis gratki algoritm povinen virishiti bude l L 1 displaystyle lambda L leqslant 1 abo l L gt b displaystyle lambda L gt beta Podibno do inshih zadach iz peredumovoyu algoritmu dozvoleni pomilki u vsih inshih vipadkah Inshoyu versiyeyu zadachi ye G a p S V P z g displaystyle GapSVP zeta gamma dlya deyakih funkcij z g displaystyle zeta gamma Vhodom algoritmu ye bazis B displaystyle B i chislo d displaystyle d Algoritm zabezpechuye shob vsi vektori v ortogonalizaciyi Grama Shmidta mali dovzhinu ne menshu 1 shob l L B z n displaystyle lambda L B leqslant zeta n i shob 1 d z n g n displaystyle 1 leqslant d leqslant zeta n gamma n de n displaystyle n rozmirnist Algoritm povinen prijnyati yaksho l L B d displaystyle lambda L B leqslant d i vidkinuti yaksho l L B g n d displaystyle lambda L B geqslant gamma n d Dlya velikih z displaystyle zeta z n gt 2 n 2 displaystyle zeta n gt 2 n 2 zadacha ekvivalentnaG a p S V P g displaystyle GapSVP gamma oskilki preprocesornij krok za dopomogoyu algoritmu LLL robit drugu umovu a otzhe z displaystyle zeta zajvoyu Zadacha znahodzhennya najblizhchogo vektoru ZNV Ilyustraciya zadachi znahodzhennya najblizhchogo vektora bazisni vektoru pokazani sinim kolorom najblizhchij vektor pokazanij chervonim zovnishnij vektor pokazanij zelenim U ZNV angl Closest vector problem CVP dlya gratki L dani bazis vektornogo prostoru V i metrika M chasto L2 a takozh vektor v v V ale ne obov yazkovo v L Vimagayetsya znajti vektor v L najbilsh blizkij do v u miru M U g displaystyle gamma nablizhenij versiyi ZNVg treba znajti vektor gratki na vidstani sho ne perevershuye g displaystyle gamma Zv yazok iz ZNV Zadacha znahodzhennya najblizhchogo vektoru ye uzagalnennyam zadachi znahodzhennya najkorotshogo vektoru Legko pokazati sho yaksho zadanij provisnik dlya ZNVg viznachenij nizhche mozhna virishiti ZNVg shlyahom deyakih zapitiv provisnikovi Prirodnij metod poshuku najkorotshogo vektoru shlyahom zapitiv do provisnika ZNVg shob znajti najblizhchij vektor ne pracyuye oskilki 0 ye vektorom gratki i algoritm potencijno mozhe povernuti 0 Zvedennya vid ZNVg do ZNVg nastupne pripustimo sho vhodom zadachi ZNVg ye bazis gratki B b 1 b 2 b n displaystyle B b 1 b 2 ldots b n Rozglyanemo bazis B i b 1 2 b i b n displaystyle B i b 1 ldots 2b i ldots b n bude vektorom yakij povernuv algoritm ZNVg B i b i displaystyle gamma B i b i Stverdzhuyetsya sho najkorotshij vektor v mnozhini x i b i displaystyle x i b i ye najkorotshim vektorom v danij gratci Trudnoshi Goldrajh Missiansio Safra i Sejfert pokazali sho z bud yakoyi skladnosti ZNV vitikaye taka zh skladnist dlya ZNV Vikoristovuyuchi zasobi Arora Babayi sho pereviryayetsya Stern Svidik pokazali sho ZNV vazhka dlya aproksimaciyi do mnozhnika 2 log 1 ϵ n displaystyle 2 log 1 epsilon n yaksho tilki ne NP DTIME 2 p o l y log n displaystyle operatorname NP subseteq operatorname DTIME 2 poly log n Dinur Kindler Safra posilili ce vkazavshi NP trudnist z ϵ log log n c displaystyle epsilon log log n c dlya c lt 1 2 displaystyle c lt 1 2 Sferichne dekoduvannya Algoritm dlya ZNV osoblivo variant Finci i Posta vikoristovuyetsya napriklad dlya viyavlennya danih u bezprovidnih sistemah zv yazku z bagatokanalnim vhodom bagatokanalnim vihodom MIMO dlya kodovanih i rozkodovanih signaliv U comu konteksti vin nazivayetsya sferichnim dekoduvannyam Algoritm buv zastosovanij v oblasti cilochiselnogo dozvolu neodnoznachnosti fazi takoyu sho nese GNSS GPS U cij oblasti ce nazivayetsya LAMBDA metodom GapSVPCya zadacha podibna do zadachi GapSVP Dlya g a p c v p b displaystyle gapcvp beta vhodom ye bazis gratki i vektor v displaystyle v a algoritm povinen vidpovisti yaka z umov vikonuyetsya isnuye vektor gratki takij sho vidstan mizh nim i v displaystyle v ne perevershuye 1 Bud yakij vektor gratki znahoditsya vid v displaystyle v na vidstani bilshomu b displaystyle beta Vidomi rezultati Zadacha trivialno mistitsya v klasi NP dlya bud yakogo koeficiyenta aproksimaciyi en v 1987 pokazav sho algoritmi z determinovanim polinomialnim chasom mozhut rozv yazati zadachu b 2 O n log log n 2 log n displaystyle beta 2 O n log log n 2 log n Ajtai Kumar Sivakumar pokazali sho jmovirnisni algoritmi mozhut otrimati zlegka bilshe krashij koeficiyent aproksimaciyi b 2 O n log log n log n displaystyle beta 2 O n log log n log n U 1993 Banashchik pokazav sho G a p C V P n displaystyle GapCVP n mistitsya v N P c o N P displaystyle NP cap coNP U 2000 Goldrajh i Goldvasser pokazali sho b n log n displaystyle beta sqrt n log n pomishaye zadachu v klasi yak NP tak i U 2005 Aaronov i Redzhev pokazali sho dlya deyakoyi konstanti c displaystyle c zadacha z b c n displaystyle beta c sqrt n vhodit v N P c o N P displaystyle NP cap coNP Zadacha pro najkorotshi nezalezhni vektoriYaksho dani gratki L rozmirnosti n algoritm povinen vidati n linijno nezalezhnih vektoriv v 1 v 2 v n displaystyle v 1 v 2 ldots v n takih sho max v i lt max B b i displaystyle max v i lt max B b i de prava chastina skladayetsya z usih bazisiv B b 1 b n displaystyle B b 1 ldots b n gratki U g displaystyle gamma priblizhennij versiyi yaksho dani gratki L rozmirnosti n algoritm znahodit n linijno nezalezhnih vektoriv v 1 v 2 v n displaystyle v1 v2 ldots v n dovzhini max v i g l n L displaystyle max v i leqslant gamma lambda n L de l n L displaystyle lambda n L ye n displaystyle n m podalshim minimumom L displaystyle L Dekoduvannya z obmezhenoyu vidstannyuCe zadacha podibna do ZNV Yaksho danij vektor takij sho jogo vidstan vid gratki ne perevershuye l L 2 displaystyle lambda L 2 algoritm povinen vidati najblizhchij vektor gratki Zadacha pokrittya gratki radiusamiYaksho danij bazis dlya gratki algoritm povinen znajti najbilshu vidstan chi v deyakih versiyah jogo aproksimaciyu vid bud yakogo vektoru do gratki Zadacha poshuku najkorotshogo bazisuBagato zadach stayut prostishimi yaksho vhidnij bazis skladayetsya z korotkih vektoriv Algoritm yakij virishuye zadachu poshuku najkorotshogo bazisu PKB povinen po zadanomu bazisu gratki B displaystyle B dati ekvivalentnij bazis B displaystyle B takij sho dovzhina shonajdovshogo vektoru v B displaystyle B nastilki korotka naskilki mozhlivo Aproksimovana versiya zadachi PKBg polyagaye v poshuku bazisu shonajdovshij vektor yakogo ne perevershuye po dovzhini v g displaystyle gamma raz shonajdovshogo vektoru v najkorotshomu bazisi Vikoristannya v kriptografiyiDokladnishe Kriptografiya na gratkah Skladnist serednogo vipadku zadach utvoryuye bazis dlya dovedennya stijkosti bilshosti kriptografichnih shem Prote eksperimentalni dani nashtovhuyut na pripushennya sho dlya bilshosti NP skladnih zadanch cya vlastivist vidsutnya voni lishe vazhki u girshomu razi Dlya bagatoh zadach teoriyi gratok pripustilo abo dovedeno sho voni vazhki v serednomu sho robit yih privablivimi dlya kriptografichnih shem Prote skladnist u girshomu razi deyakih zadach teoriyi gratok vikoristovuyetsya dlya stvorennya shem stijkoyi kriptografiyi Vikoristannya trudnosti u girshomu vipadku v takih shemah pomishaye yih v klas duzhe nebagatoh shem yaki z velikoyu imovirnistyu stijki navit dlya kvantovih komp yuteriv Navedeni vishe zadachi teoriyi gratok legko virishuyutsya yaksho danij horoshij bazis Metu algoritmiv redukciyi bazisu po comu bazisu gratki vidati novij bazis sho polyagaye yih vidnosno korotkih majzhe ortogonalnih vektoriv Algoritm Lenstri Lenstri Lovasha redukciyi bazisu gratki buv rannim efektivnim algoritmom dlya ciyeyi zadachi yakij mozhe vidati zredukovanij bazis gratki za polinomialnij chas Cej algoritm i jogo podalshi polipshennya buli vikoristani dlya zlomu deyakih kriptografichnih shem sho sformuvalo jogo status yak duzhe vazhlivij zasib v kriptografiyi Uspih LLL na eksperimentalnih danih priviv do viri sho redukciya bazisu gratki na praktici mozhe buti prostoyu zadacheyu Prote cya vira bula zrujnovana koli u kinci 1990s h buli otrimani novi rezultati pro skladnist zadach teoriyi gratok pochinayuchi z rezultativ Ajtai U svoyij zasadnichij roboti Ajtai pokazav sho ZNV buv NP vazhkim i viyaviv deyaki zv yazki mizh skladnistyu u girshomu razi i skladnistyu v serednomu deyakih zadach teoriyi gratok Gruntuyuchis na cih rezultatah Ajtai i Dvork stvorili kriptosistemu z vidkritim klyuchem sekretnist yakoyi mozhe buti dovedena vikoristovuyuchi lishe girshij vipadok trudnosti pevnoyi versiyi ZNV sho bulo pershim rezultatom po stvorennyu zahishenih sistem z vikoristannyam trudnosti u girshomu razi PrimitkiAjtai 1998 s 10 19 Ajtai 1998 s 10 19 van Emde Boas 1981 Kannan ta 1 983 Fincke Pohst 1985 Gama Nguyen Regev 2010 Schnorr 2003 Aono Nguyen 2017 Ajtai Kumar Sivakumar 2001 Micciancio Voulgaris 2010 Becker Ducas Gama Laarhoven 2015 Agrell Eriksson Vardy Zeger 2002 Micciancio Voulgaris 2010a Aggarwal Dadush Regev Stephens Davidowitz 2015 Micciancio 2017 Schnorr 1987 s 201 224 Schnorr Euchner 1994 s 181 199 Chen Nguyen 2011 s 1 20 Peikert 2009 s 333 342 Micciancio Goldwasser 2002 Goldreich Micciancio Safra Seifert 1999 s 55 61 Arora Babai Stern Sweedyk 1997 s 317 331 Dinur Kindler Safra 2003 s 205 243 Fincke Pohst 1985 s 463 471 Biglieri Calderbank Constantinides Goldsmith Paulraj Poor 2007 Agrell Eriksson Vardy Zeger 2002 s 2201 2214 Wang Le Ngoc 2011 s 189 200 Hassibi Boyd 1998 s 2938 2952 Schnorr 1993 Ajtai Kumar Sivakumar 2001 s 601 610 Banaszczyk 1993 s 625 635 Goldreich Goldwasser 1998 s 1 9 Aharonov Regev 2005 Lenstra Lenstra Lovasz 1982 s 515 534 Ajtai 1996 s 99 108 Ajtai 1998 s 10 19 Ajtai Dwork 1997 s 284 293 Cai 2000 s 1 32 LiteraturaSubhash Khot Hardness of approximating the shortest vector problem in lattices J ACM 2005 T 52 vip 5 DOI 10 1145 1089023 1089027 Miklos Ajtai The shortest vector problem in L2 is NP hard for randomized reductions Proceedings of the thirtieth annual ACM symposium on Theory of computing Dallas Texas United States ACM 1998 Peter van Emde Boas Another NP complete problem and the complexity of computing short vectors in a lattice University of Amsterdam Department of Mathematics Netherlands 1981 Chris Peikert Public key cryptosystems from the worst case shortest vector problem extended abstract Proceedings of the 41st annual ACM symposium on Theory of Computing Bethesda MD USA ACM 2009 Daniele Micciancio Shafi Goldwasser Complexity of Lattice Problems A Cryptographic Perspective 2002 T 671 Kluwer International Series in Engineering and Computer Science ISBN 0792376889 Daniele Micciancio Shafi Goldwasser Complexity of Lattice Problems A Cryptographic Perspective Springer US 2011 The Springer International Series in Engineering and Computer Science ISBN 9781461508984 Goldreich O Micciancio D Safra S Seifert J p Approximating shortest lattice vectors is not harder than approximating closest lattice vectors Inf Process Lett 1999 T 71 vip 2 DOI 10 1016 S0020 0190 99 00083 6 Oded Goldreich Shafi Goldwasser On the limits of non approximability of lattice problems Proceedings of the thirtieth annual ACM symposium on Theory of computing Dallas Texas United States ACM 1998 Sanjeev Arora Laszlo Babai Jacques Stern Z Sweedyk The hardness of approximate optima in lattices codes and systems of linear equations J Comput Syst Sci 1997 T 54 vip 2 DOI 10 1109 SFCS 1993 366815 Dinur I Kindler G Safra S Approximating CVP to Within Almost Polynomial Factors is NP Hard Combinatorica 2003 T 23 vip 2 DOI 10 1007 s00493 003 0019 y Dinur I Kindler G Safra S Approximating CVP to within Almost Polynomial Factors is NP Hard Proceedings of the 39th Annual Symposium on Foundations of Computer Science IEEE Computer Society 1998 ISBN 0 8186 9172 7 Fincke U Pohst M Improved Methods for Calculating Vectors of Short Length in a Lattice Including a Complexity Analysis Math Comp 1985 T 44 vip 170 DOI 10 1090 S0025 5718 1985 0777278 8 Biglieri E Calderbank R Constantinides A Goldsmith A Paulraj A Poor H V MIMO Wireless Communications Cambridge Cambridge U P 2007 Ping Wang Tho Le Ngoc A List Sphere Decoding Algorithm with Improved Radius Setting Strategies Wireless Personal Communications 2011 T 61 vip 1 DOI 10 1007 s11277 010 0018 4 Hassibi A Boyd S Integer Parameter Estimation in Linear Models with Applications to GPS IEEE Trans Sig Proc 1998 T 46 vip 11 DOI 10 1109 78 726808 Miklos Ajtai Ravi Kumar D Sivakumar A sieve algorithm for the shortest lattice vector problem Proceedings of the thirty third annual ACM symposium on Theory of computing Hersonissos Greece ACM 2001 Banaszczyk W New bounds in some transference theorems in the geometry of numbers Math Ann 1993 T 296 vip 1 DOI 10 1007 BF01445125 Dorit Aharonov Oded Regev Lattice problems in NP displaystyle cap coNP J ACM 2005 T 52 vip 5 DOI 10 1145 1089023 1089025 Ajtai M Generating hard instances of lattice problems Proceedings of the twenty eighth annual ACM symposium on Theory of computing Philadelphia Pennsylvania United States ACM 1996 Miklos Ajtai Cynthia Dwork A public key cryptosystem with worst case average case equivalence Proceedings of the twenty ninth annual ACM symposium on Theory of computing El Paso Texas United States ACM 1997 Jin Yi Cai The Complexity of Some Lattice Problems Algorithmic Number Theory Lecture Notes in Computer Science 2000 T 1838 DOI 10 1007 10722028 1 Lenstra A K Lenstra H W Lovasz L Factoring polynomials with rational coefficients Math Ann 1982 T 261 vip 4 DOI 10 1007 BF01457454 Daniele Micciancio Panagiotis Voulgaris Faster Exponential Time Algorithms for the Shortest Vector Problem Proceedings of the Twenty first Annual ACM SIAM Symposium on Discrete Algorithms Philadelphia PA USA Society for Industrial and Applied Mathematics 2010 S 1468 1480 SODA 10 ISBN 9780898716986 Daniele Micciancio Panagiotis Voulgaris A Deterministic Single Exponential Time Algorithm for Most Lattice Problems Based on Voronoi Cell Computations Proceedings of the Forty second ACM Symposium on Theory of Computing New York NY USA ACM 2010a ISBN 9781450300506 DOI 10 1145 1806689 1806739 Becker A Ducas L Gama N Laarhoven T Proceedings of the Twenty Seventh Annual ACM SIAM Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics 2015 S 10 24 Proceedings DOI 10 1137 1 9781611974331 ch2 Divesh Aggarwal Daniel Dadush Oded Regev Noah Stephens Davidowitz Solving the Shortest Vector Problem in 2n Time Using Discrete Gaussian Sampling Extended Abstract Proceedings of the Forty seventh Annual ACM Symposium on Theory of Computing New York NY USA ACM 2015 STOC ISBN 9781450335362 DOI 10 1145 2746539 2746606 Daniele Micciancio Lattice Cryptography Shortest Vector Problem 2017 Schnorr C P A hierarchy of polynomial time lattice basis reduction algorithms Theoretical Computer Science 1987 T 53 vip 2 DOI 10 1016 0304 3975 87 90064 8 Schnorr C P Euchner M Lattice basis reduction Improved practical algorithms and solving subset sum problems Mathematical Programming 1994 T 66 vip 1 3 ISSN 0025 5610 DOI 10 1007 bf01581144 Claus Peter Schnorr Lattice Reduction by Random Sampling and Birthday Methods 14 STACS Springer Berlin Heidelberg 2003 ISBN 3540364943 DOI 10 1007 3 540 36494 3 14 Yuanmi Chen Phong Q Nguyen 1 Advances in Cryptology ASIACRYPT 2011 Springer Berlin Heidelberg 2011 DOI 10 1007 978 3 642 25385 0 1 Literatura dlya podalshogo chitannyaAgrell E Eriksson T Vardy A Zeger K Closest Point Search in Lattices IEEE Trans Inform Theory 2002 T 48 vip 8 DOI 10 1109 TIT 2002 800499 Daniele Micciancio The Shortest Vector Problem is u007BNP u007D hard to approximate to within some constant SIAM Journal on Computing 2001 T 30 vip 6 S 2008 2035 DOI 10 1137 S0097539700373039 Phong Q Nguyen Jacques Stern Lattice Reduction in Cryptology An Update Proceedings of the 4th International Symposium on Algorithmic Number Theory Springer Verlag 2000 S 85 112 ISBN 3 540 67695 3 Ravi Kannan Improved Algorithms for Integer Programming and Related Lattice Problems Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing New York NY USA ACM 1983 STOC ISBN 0897910990 DOI 10 1145 800061 808749 Nicolas Gama Phong Q Nguyen Oded Regev Lattice Enumeration Using Extreme Pruning Advances in Cryptology EUROCRYPT 2010 Springer Berlin Heidelberg 2010 DOI 10 1007 978 3 642 13190 5 13 Yoshinori Aono Phong Q Nguyen Random Sampling Revisited Lattice Enumeration with Discrete Pruning Advances in Cryptology EUROCRYPT 2017 Springer Cham 2017 DOI 10 1007 978 3 319 56614 6 3 Daniele Micciancio Panagiotis Voulgaris Faster Exponential Time Algorithms for the Shortest Vector Problem Id 1873601 1873720 SODA 10 nedostupne posilannya Daniele Micciancio Panagiotis Voulgaris A Deterministic Single Exponential Time Algorithm for Most Lattice Problems Based on Voronoi Cell Computations Becker A Ducas L Gama N Laarhoven T 1 z dzherela 19 sichnya 2022