Задача про голку полягає у визначенні найменшої площі фігури на площині, в якій одиничний відрізок, «голку», можна розвернути на 180 градусів, повернувши його у початкове положення з оберненою орієнтацією. Це можна зробити в колі радіуса 1/2. Інший приклад — наведена на малюнку фігура, обмежена дельтоїдою, яка має меншу площу.
Виявляється, що можна побудувати фігуру з довільно малою площею.
Історія
Це питання розглядав [ja]. Він довів, що для опуклих областей найменша площа досягається для рівностороннього трикутника з висотою 1. Його площа дорівнює .
Можливо, Какея також висунув гіпотезу, що фігура, обмежена дельтоїдою, наведена на малюнку, має найменшу площу. Це твердження спростував Безикович.
Множина Безиковича
Безикович побудував компактну множину нульової міри, що містить одиничний відрізок у будь-якому напрямку.
Звідси легко випливає, що голку можна розвернути у фігурі довільно малої площі. Дійсно, легко бачити, що одиничне коло можна розбити на сектори і лише паралельними переносами помістити в довільно малий окіл множини .
Зауважимо, що одиничний відрізок можна пересунути на паралельну пряму у фігурі довільно малої площі. Тому, повернувши відрізок в одному секторі, його можна перетягнути в наступний, пройшовши множиною довільно малої площі; повторивши цю операцію кілька разів, отримаємо необхідний розворот.
Варіації та узагальнення
- У побудові Безіковіча при прямуванні площі фігури до нуля її діаметр прямує до нескінченності. 1941 року Г. Дж. Ван Альфен показав, що голку можна розвернути у фігурі як завгодно малої площі, розташованої всередині кола з радіусом (для довільного ).
- Існують однозв'язні множини, в яких можна розвернути голку, з площею меншою, ніж у фігури, обмеженою дельтоїдою.
- Такі приклади знайдено 1965 року. Мелвін Блум та І. Ю. Шенберг показали, що їхню площу можна зробити довільно близькою до .
- 1971 року Каннінгем показав, що для будь-якого існує підхожа однозв'язна фігура з площею менше , що міститься в колі радіуса 1.
- Визначимо [en] в Rn як множину нульової міри, що містить одиничний відрізок у будь-якому напрямку (таку множину також називають множиною Какеї). Так звана гіпотеза Какеї стверджує, що множини Безиковича мають розмірність n (за Гаусдорфом і за Мінковським), тобто рівну розмірності простору, який їх містить.
- Гіпотеза Какеї істинна в розмірності 1 і 2.
- Вольф показав, що в n-вимірному просторі розмірність множини Безиковича має бути принаймні (n +2)/2.
- 2002 року Кац і Тао покращили оцінку Вольфа, показавши, що розмірність не може бути меншою, ніж . Ця оцінка краща для n > 4.
- Визначимо (n, k)-множину Безиковича як компактну множину в Rn нульової міри, що містить у кожному k-вимірному напрямку k-вимірний одиничний диск.
- Гіпотеза про (n, k)-множини Безиковича: (n, k)-множин Безиковича не існує при k >1.
- 1979 року Марстранд довів, що не існує (3, 2)-множини Безиковича.
- Приблизно тоді ж, Фолкнер довів, що немає (n, k)-множин для 2 k > n.
- Найкраща оцінка нині належить Бургену, який довів, що множин, які мають 2k-1 + k > n, немає.
- У 1997 і 1999 роках Вольф довів, що множини, що містять сферу будь-якого радіуса, повинні мати повну розмірність, тобто розмірність простору, який їх містить.
- Еліас Штайн довів, що будь-яка множина, що містить сферу навколо кожної точки, повинна мати додатну міру при n ≥ 3, і Марстранд довів те саме для випадку n = 2.
- 1999 року Вольф сформулював аналог задачі про голку для скінченних полів. Нехай F скінченне поле. Множину K ⊆ Fn називають множиною Безиковича, якщо для кожного вектора y ∈ Fn існує такий x ∈ Fn, що K містить усі вектори вигляду {x + ty : t ∈ F}.
- Задача про голку в просторі над скінченним полем: Число елементів K не менше, ніж cn|F|n де cn > 0 — стала, яка залежить тільки від n.
- Двір довів цю гіпотезу для cn = 1/n!, скориставшись таким аргументом. Він зазначив, що будь-який многочлен із n змінними степеня менш ніж |F|, який дорівнює нулю на множині Безиковича, має бути тотожно рівним нулю. З іншого боку, многочлени з n змінними степеня менш ніж |F| утворюють векторний простір розмірності
- Отже, існує хоча б один нетривіальний многочлен степеня меншого, ніж |F|, який дорівнює нулю на довільній множині з меншою кількістю точок. Звідси множина Безиковича повинна мати хоча б |F|n/n! точок. Про цю задачу Двір написав оглядову статтю.
Застосування
- 1971 року Фефферман використав побудову множини Безиковича, щоб показати, що в розмірності більшій, ніж 1, зрізані[] інтеграли Фур'є, взяті за кулями з центром у початку координат із радіусами, що прямують до нескінченності, можуть не збігатися за нормою Lp при р ≠ 2 (на відміну від одновимірного випадку, де такі зрізані інтеграли збігаються).
Див. також
Примітки
- Alphen, H. J. Uitbreiding van een stelling von Besicovitch. — Mathematica Zutphen B. — 1942. — С. 144–157.
- Cunningham, F. The Kakeya problem for simply connected and for star-shaped sets : [ 14 липня 2010]. — American Mathematical Monthly. — 1971. — Вип. 2. — С. 114–129.
- Davies, Roy. Some remarks on the Kakeya problem. — Proc. Cambridge Philos. Soc.. — 1971. — Вип. 3. — С. 417–421.
- Wolff, Thomas. An improved bound for Kakeya type maximal functions. — Rev. Mat. Iberoamericana. — 1995. — С. 651–674.
- Katz, Nets Hawk; Tao, Terence. New bounds for Kakeya problems. — J. Anal. Math.. — 2002. — С. 231–263.
- Marstrand, J. M. Packing Planes in R3. — Mathematika. — 1979. — Вип. 2. — С. 180–183.
- Falconer, K. J. Continuity properties of k-plane integrals and Besicovitch sets. — Math. Proc. Cambridge Philos. Soc.. — 1980. — Вип. 2. — С. 221–226.
- Bourgain, Jean. Besicovitch type maximal operators and applications to Fourier analysis // Geom. Funct. Anal.. — 1997. — Вип. 2. — С. 147–187.
- Wolff, Thomas. A Kakeya problem for circles. — American Journal of Mathematics. — 1997. — Вип. 5. — С. 985–1026.
- Wolff, Thomas (1999).
- Stein, Elias. Maximal functions: Spherical means. — PNAS. — 1976. — Вип. 7. — С. 2174–2175. Повний текст на PMC: 430482
- Marstrand, J. M. Packing circles in the plane. — Proceedings of the London Mathematical Society. — 1987. — С. 37–58.
- Dvir, Zeev (2009).
- Dvir's proof of the finite field Kakeya conjecture [ 2016-05-03 у Wayback Machine.] // Terence Tao (2008-03-24).
Література
- Яглом И. М., Болтянский В. Г. Выпуклые фигуры. — М.-Л. : ГТТИ, 1951. — 343 с. — (Библиотека математического кружка, вып. 4)
- Besicovitch Abram (1963). «The Kakeya Problem». American Mathematical Monthly 70 (7): 697—706. doi : 10.2307/2312249. JSTOR 2312249. MR 0157266.
- Dvir, Zeev (2009). «On the size of Kakeya sets in finite fields». Journal of the American Mathematical Society 22 (4): 1093—1097. arXiv: 0803.2336. doi:10.1090/S0894-0347-08-00607-3. MR 2525780.
- Falconer, Kenneth J. (1985). The Geometry of Fractal Sets. Cambridge Tracts in Mathematics 85. Cambridge: Cambridge University Press. ISBN 0-521-25694-1. MR 0867284.
- Kakeya, Soichi (1917). «Some problems on maximum and minimum regarding ovals». Tohoku science reports 6: 71-88.
- Katz, Nets Hawk; Łaba, Izabella; Tao, Terence (2000). «An improved bound on the Minkowski dimension of Besicovitch sets in » (PDF). Annals of Mathematics 152 (2): 383—446. doi:10.2307/2661389. JSTOR 2661389. MR 1804528.
- Wolff, Thomas (1999). «Recent work connected with the Kakeya problem». In Rossi, Hugo. Prospects in Mathematics: Invited Talks on the Occasion of the 250th Anniversary of Princeton University. Providence, RI: American Mathematical Society. pp. 129—162. ISBN 978-0-8218-0975-4. MR 1660476.
- Wolff, Thomas (2003). Łaba, Izabella; Shubin, Carol, eds. Lectures on Harmonic Analysis. University Lecture Series 29. With a foreword by Charles Fefferman and preface by Izabella Łaba. Providence, RI: American Mathematical Society. doi:10.1090/ulect/029. ISBN 0-8218-3449-5. MR 2003254.
- The Kakeya problem, and connections to harmonic analysis at University of British Columbia.
- Besicovitch at UCLA
- Kakeya needle problem at mathworld
- An Introduction to Besicovitch-Kakeya Sets
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Zadacha pro golku polyagaye u viznachenni najmenshoyi ploshi figuri na ploshini v yakij odinichnij vidrizok golku mozhna rozvernuti na 180 gradusiv povernuvshi jogo u pochatkove polozhennya z obernenoyu oriyentaciyeyu Ce mozhna zrobiti v koli radiusa 1 2 Inshij priklad navedena na malyunku figura obmezhena deltoyidoyu yaka maye menshu ploshu Rozvorot golki vseredini deltoyidi Viyavlyayetsya sho mozhna pobuduvati figuru z dovilno maloyu plosheyu IstoriyaCe pitannya rozglyadav ja Vin doviv sho dlya opuklih oblastej najmensha plosha dosyagayetsya dlya rivnostoronnogo trikutnika z visotoyu 1 Jogo plosha dorivnyuye 1 3 displaystyle 1 sqrt 3 Mozhlivo Kakeya takozh visunuv gipotezu sho figura obmezhena deltoyidoyu navedena na malyunku maye najmenshu ploshu Ce tverdzhennya sprostuvav Bezikovich Mnozhina BezikovichaBezikovich pobuduvav kompaktnu mnozhinu K displaystyle K nulovoyi miri sho mistit odinichnij vidrizok u bud yakomu napryamku Zvidsi legko viplivaye sho golku mozhna rozvernuti u figuri dovilno maloyi ploshi Dijsno legko bachiti sho odinichne kolo mozhna rozbiti na sektori i lishe paralelnimi perenosami pomistiti v dovilno malij okil mnozhini K displaystyle K Zauvazhimo sho odinichnij vidrizok mozhna peresunuti na paralelnu pryamu u figuri dovilno maloyi ploshi Tomu povernuvshi vidrizok v odnomu sektori jogo mozhna peretyagnuti v nastupnij projshovshi mnozhinoyu dovilno maloyi ploshi povtorivshi cyu operaciyu kilka raziv otrimayemo neobhidnij rozvorot Variaciyi ta uzagalnennyaU pobudovi Bezikovicha pri pryamuvanni ploshi figuri do nulya yiyi diametr pryamuye do neskinchennosti 1941 roku G Dzh Van Alfen pokazav sho golku mozhna rozvernuti u figuri yak zavgodno maloyi ploshi roztashovanoyi vseredini kola z radiusom 2 e displaystyle 2 varepsilon dlya dovilnogo e gt 0 displaystyle varepsilon gt 0 Isnuyut odnozv yazni mnozhini v yakih mozhna rozvernuti golku z plosheyu menshoyu nizh u figuri obmezhenoyu deltoyidoyu Taki prikladi znajdeno 1965 roku Melvin Blum ta I Yu Shenberg pokazali sho yihnyu ploshu mozhna zrobiti dovilno blizkoyu do p24 5 22 displaystyle tfrac pi 24 5 2 sqrt 2 1971 roku Kanningem pokazav sho dlya bud yakogo e gt 0 displaystyle varepsilon gt 0 isnuye pidhozha odnozv yazna figura z plosheyu menshe p108 e displaystyle tfrac pi 108 varepsilon sho mistitsya v koli radiusa 1 Viznachimo en v Rn yak mnozhinu nulovoyi miri sho mistit odinichnij vidrizok u bud yakomu napryamku taku mnozhinu takozh nazivayut mnozhinoyu Kakeyi Tak zvana gipoteza Kakeyi stverdzhuye sho mnozhini Bezikovicha mayut rozmirnist n za Gausdorfom i za Minkovskim tobto rivnu rozmirnosti prostoru yakij yih mistit Gipoteza Kakeyi istinna v rozmirnosti 1 i 2 Volf pokazav sho v n vimirnomu prostori rozmirnist mnozhini Bezikovicha maye buti prinajmni n 2 2 2002 roku Kac i Tao pokrashili ocinku Volfa pokazavshi sho rozmirnist ne mozhe buti menshoyu nizh 2 2 n 4 3 displaystyle 2 sqrt 2 n 4 3 Cya ocinka krasha dlya n gt 4 Viznachimo n k mnozhinu Bezikovicha yak kompaktnu mnozhinu v Rn nulovoyi miri sho mistit u kozhnomu k vimirnomu napryamku k vimirnij odinichnij disk Gipoteza pro n k mnozhini Bezikovicha n k mnozhin Bezikovicha ne isnuye pri k gt 1 1979 roku Marstrand doviv sho ne isnuye 3 2 mnozhini Bezikovicha Priblizno todi zh Folkner doviv sho nemaye n k mnozhin dlya 2 k gt n Najkrasha ocinka nini nalezhit Burgenu yakij doviv sho mnozhin yaki mayut 2k 1 k gt n nemaye U 1997 i 1999 rokah Volf doviv sho mnozhini sho mistyat sferu bud yakogo radiusa povinni mati povnu rozmirnist tobto rozmirnist prostoru yakij yih mistit Elias Shtajn doviv sho bud yaka mnozhina sho mistit sferu navkolo kozhnoyi tochki povinna mati dodatnu miru pri n 3 i Marstrand doviv te same dlya vipadku n 2 1999 roku Volf sformulyuvav analog zadachi pro golku dlya skinchennih poliv Nehaj F skinchenne pole Mnozhinu K Fn nazivayut mnozhinoyu Bezikovicha yaksho dlya kozhnogo vektora y Fn isnuye takij x Fn sho K mistit usi vektori viglyadu x ty t F Zadacha pro golku v prostori nad skinchennim polem Chislo elementiv K ne menshe nizh cn F n de cn gt 0 stala yaka zalezhit tilki vid n Dvir doviv cyu gipotezu dlya cn 1 n skoristavshis takim argumentom Vin zaznachiv sho bud yakij mnogochlen iz n zminnimi stepenya mensh nizh F yakij dorivnyuye nulyu na mnozhini Bezikovicha maye buti totozhno rivnim nulyu Z inshogo boku mnogochleni z n zminnimi stepenya mensh nizh F utvoryuyut vektornij prostir rozmirnosti F n 1n F nn displaystyle mathbf F n 1 choose n geqslant frac mathbf F n n dd Otzhe isnuye hocha b odin netrivialnij mnogochlen stepenya menshogo nizh F yakij dorivnyuye nulyu na dovilnij mnozhini z menshoyu kilkistyu tochok Zvidsi mnozhina Bezikovicha povinna mati hocha b F n n tochok Pro cyu zadachu Dvir napisav oglyadovu stattyu dd Zastosuvannya1971 roku Fefferman vikoristav pobudovu mnozhini Bezikovicha shob pokazati sho v rozmirnosti bilshij nizh 1 zrizani utochniti integrali Fur ye vzyati za kulyami z centrom u pochatku koordinat iz radiusami sho pryamuyut do neskinchennosti mozhut ne zbigatisya za normoyu Lp pri r 2 na vidminu vid odnovimirnogo vipadku de taki zrizani integrali zbigayutsya Div takozhDeltoyida Zadacha Lebega Mnozhina NikodimaPrimitkiAlphen H J Uitbreiding van een stelling von Besicovitch Mathematica Zutphen B 1942 S 144 157 Cunningham F The Kakeya problem for simply connected and for star shaped sets 14 lipnya 2010 American Mathematical Monthly 1971 Vip 2 S 114 129 Davies Roy Some remarks on the Kakeya problem Proc Cambridge Philos Soc 1971 Vip 3 S 417 421 Wolff Thomas An improved bound for Kakeya type maximal functions Rev Mat Iberoamericana 1995 S 651 674 Katz Nets Hawk Tao Terence New bounds for Kakeya problems J Anal Math 2002 S 231 263 Marstrand J M Packing Planes in R3 Mathematika 1979 Vip 2 S 180 183 Falconer K J Continuity properties of k plane integrals and Besicovitch sets Math Proc Cambridge Philos Soc 1980 Vip 2 S 221 226 Bourgain Jean Besicovitch type maximal operators and applications to Fourier analysis Geom Funct Anal 1997 Vip 2 S 147 187 Wolff Thomas A Kakeya problem for circles American Journal of Mathematics 1997 Vip 5 S 985 1026 Wolff Thomas 1999 Stein Elias Maximal functions Spherical means PNAS 1976 Vip 7 S 2174 2175 Povnij tekst na PMC 430482 Marstrand J M Packing circles in the plane Proceedings of the London Mathematical Society 1987 S 37 58 Dvir Zeev 2009 Dvir s proof of the finite field Kakeya conjecture 2016 05 03 u Wayback Machine Terence Tao 2008 03 24 LiteraturaYaglom I M Boltyanskij V G Vypuklye figury M L GTTI 1951 343 s Biblioteka matematicheskogo kruzhka vyp 4 Besicovitch Abram 1963 The Kakeya Problem American Mathematical Monthly 70 7 697 706 doi 10 2307 2312249 JSTOR 2312249 MR 0157266 Dvir Zeev 2009 On the size of Kakeya sets in finite fields Journal of the American Mathematical Society 22 4 1093 1097 arXiv 0803 2336 doi 10 1090 S0894 0347 08 00607 3 MR 2525780 Falconer Kenneth J 1985 The Geometry of Fractal Sets Cambridge Tracts in Mathematics 85 Cambridge Cambridge University Press ISBN 0 521 25694 1 MR 0867284 Kakeya Soichi 1917 Some problems on maximum and minimum regarding ovals Tohoku science reports 6 71 88 Katz Nets Hawk Laba Izabella Tao Terence 2000 An improved bound on the Minkowski dimension of Besicovitch sets in R3 displaystyle mathbf R 3 PDF Annals of Mathematics 152 2 383 446 doi 10 2307 2661389 JSTOR 2661389 MR 1804528 Wolff Thomas 1999 Recent work connected with the Kakeya problem In Rossi Hugo Prospects in Mathematics Invited Talks on the Occasion of the 250th Anniversary of Princeton University Providence RI American Mathematical Society pp 129 162 ISBN 978 0 8218 0975 4 MR 1660476 Wolff Thomas 2003 Laba Izabella Shubin Carol eds Lectures on Harmonic Analysis University Lecture Series 29 With a foreword by Charles Fefferman and preface by Izabella Laba Providence RI American Mathematical Society doi 10 1090 ulect 029 ISBN 0 8218 3449 5 MR 2003254 The Kakeya problem and connections to harmonic analysis at University of British Columbia Besicovitch at UCLA Kakeya needle problem at mathworld An Introduction to Besicovitch Kakeya Sets