Метою цієї статті є висвітлення важливих моментів виведення рівнянь Нав'є — Стокса, а також його застосування та формулювання для різних сімейств рідин.
Основні припущення
Рівняння Нав'є — Стокса ґрунтуються на припущенні, що рідина в масштабах інтересу є континуумом, інакше кажучи, вона не складається з дискретних часток, а є суцільною речовиною. Інше необхідне припущення полягає в тому, що всі поля, що представляють інтерес, як тиск, швидкість потоку, щільність і температура, диференційовані, принаймні мають слабку похідну.
Рівняння виходять з основних принципів нерозривності маси, імпульсу та енергії. Для цього іноді необхідно розглянути кінцевий довільний об'єм, який називається контрольним об'ємом, до якого ці принципи можуть бути застосовані. Цей кінцевий об'єм позначається літерою а його гранична поверхня . Контрольний об'єм може залишатися фіксованим у просторі і може рухатися разом з рідиною.
Матеріальна похідна
Зміна властивостей рухомої рідини може бути виміряти двома різними способами. Можна виміряти дану властивість у фіксованій точці в просторі, коли частинки рідини проходять крізь неї, або слідкуючи за частинками рідини що рухаються уздовж лінії току. Похідна поля від фіксованого положення в просторі називається похідною Ейлера, а похідна, що слідує за рухомою ділянкою, називається адвективною або матеріальною («лагранжевою») похідною.
Матеріальна похідна визначається як нелінійний оператор:
де є швидкість току рідини. Перший член у правій частині рівняння є звичайною евлерівською похідною (тобто похідною в фіксованій системі відліку, що представляє зміни в точці за часом), тоді як другий член являє собою зміну властивості відносно позиції (див. адвекція). Ця «особлива» похідна насправді є звичайною похідною від функції багатьох змінних вздовж ліній току рідини; вона може бути отриманий шляхом застосування ланцюгогого правила, в якому вконується диференціювання всіх незалежних змінних по черзі уздовж ліній току (тобто виконується обчислення загальної похідної уздовж ліній току).
Наприклад, вимірювання змін швидкості вітру в атмосфері можна отримати за допомогою анемометра на метеостанції або спостерігаючи за рухом метиозонду. Анемометр в першому випадку — це вимірювання швидкості всіх рухомих часток, що проходять повз фіксовану точку в просторі, тоді як у другому випадку метиозонд вимірює зміни швидкості, рухаючись разом з потоком.
Рівняння неперервності
Рівняння Нав'є — Стокса є спеціальним рівнянням неперервності . Рівняння неперервності можна вивести з принципів збереження:
Це робиться за допомогою рівняння нерозривності, що являє собою інтегральне співвідношення, яке визначає, що швидкість зміни (похідна) інтегралу на деякому контрольному об'ємі від деякої функції , повинна дорівнювати сумарним витратам потоку (приток і відток) через границю контрольного об'єму що позначається плюс сумарним витратам (приток і відток) елементарних джерел і стоків усередені контрольного об'єму. Це виражається наступним інтегральним рівнянням нерозривності:
де — це швидкість току рідини, — це одиничний вектор зовнішньої нормалі, і представляє собою елементарне джерело або елементарний стік рідини, вважаючи, що для стоку має позитивний знак.
Формула Остроградського може бути використана для переходу від інтегралу по поверхні до інтегралу по об'єму:
Застосовуючи теорему Рейнольдса про перенесення до лівої частини рівняння і об'єднуючи всі інтергали отримаємо:
Інтеграл має дорівнювати нулю для будь-якого контрольного об'єму ; а ця умова у свою чергу виконується, коли підінтегральній вираз сам дорівнює нулеві:
З цього важливого співвідношення (дуже загальне рівняння неперервності) можуть бути стисло написані три важливі поняття: збереження маси, збереження імпульсу та збереження енергії. Справедливість цього зберігається, якщо φ є вектором, в цьому випадку друга частина похідна вектор-векторний добутоку стане Діадою.
Рівняння збереження імпульсу
Застосовуючи закон збереження імпульсу до потоку рідини можна отримати у загальному вигляді рівняння збереження імпульсу для потоку. Якщо інтенсивна властивість φ (така властивість, що не залежить від кількості речовини) є потоком маси (або потоком питомого імпульсу), то замінюючи її на добуток густини і швидкості потоку , отримаємо рівняння:
де є діадою, спеціальним випадком тензорного добутку, результатом якого є тензор другого рангу; дивергенція тензору другого рангу є вектор (тензор першого рангу). Розкриваючи дужки, користуючись правилом похідної від добутку отримаємо рівнянняЖ
Зверніть увагу на те, що градієнт вектору є спеціальним випадком коваріантної похідної, що в результаті дає тензор другого рангу, за винятком Декартової системи координат. Важливо розуміти, що це не є просто градієнтом, що обчислюється поелементно. Приймаючи це до уваги матимемо: :
Вираз у лівій дужці дорівнює згідно рівняння неперервності масси (для даного мометну часу) нулю.The leftmost expression enclosed in parentheses is, by mass continuity (shown in a moment), equal to zero. Зауважте, що решта лівої частини рівняння є похідною Лагранжа (індивідуальною, або субстанціональною похідною):
цей вираз, використовуючи оператор похідної Лагранжа запишеться:
Цей враз по суті є дугим законом Ньютона (F = ma) з точки зору об'ємних а не точкових сил. Кожен член рівнянь Нав'є — Стокса є об'ємною силою. Коротший, хоч і менш ретельний спосіб отримання цього результату, є застосування ланцюгового правила щодо функції прискорення:
де є функцією швидкості. Причиною того, що цей метод є «недостатньо ретельний» є той факт що ми не показали що вибір
є коректним; однак це має сенс, тому що з такий вибір похідної є «наслідком» поняття «частинки» рідини, а для того, щоб другий закон Ньютона працював, сили у рідині слід підсумовувати розглядаючи рінину що складається із частинок. Для цього конвективна похідна також відома як похідна «частки» рідини.
Рівняння збереження маси
Також можна розглянути масу. Приймаючи (відсутнє джерела або сток) і вводячи густину рідини:
де є густиною (масса у одиниці об'єму), і є швидкістю потоку рідини. Це рівняння називається рівнянням нерозривності масси, обо просто рівнянням нерозривності. Це рівняння зазвичай супроводжує рівняння Нав'є — Стокса.
У разі нестисливої рідини, (тобто щільність уздовж ліній току рідини, є сталою), і рівняння зменшується до рівняння:
що виражає збереження об'єму рідини.
Рівняння збереження імпульсу у формі Коші
Ця стаття містить фрагменти іноземною мовою. |
The generic density of the momentum source seen previously is made specific first by breaking it up into two new terms, one to describe surface forces and one for body forces, such as gravity. By examining the forces acting on a small cube in a fluid, it may be shown that
where is the Cauchy stress tensor, and accounts for body forces present. This equation is called the Cauchy momentum equation and describes the non-relativistic momentum conservation of any continuum that conserves mass. is a rank two symmetric tensor given by its covariant components. In orthogonal coordinates in three dimensions it is represented as the 3x3 matrix:
where the are normal stresses and shear stresses. This matrix is split up into two terms:
where is the 3 x 3 identity matrix and is the deviatoric stress tensor. Note that the mechanical pressure p is equal to minus the mean normal stress:
The motivation for doing this is that pressure is typically a variable of interest, and also this simplifies application to specific fluid families later on since the rightmost tensor in the equation above must be zero for a fluid at rest. Note that is traceless. The Cauchy equation may now be written in another more explicit form:
This equation is still incomplete. For completion, one must make hypotheses on the forms of and , that is, one needs a constitutive law for the stress tensor which can be obtained for specific fluid families and on the pressure. Some of these hypotheses bring to Euler equations (fluid dynamics), other ones bring to Navier-Stokes equations. Additionally, if the flow is assumed compressible an equation of state will be required, which will likely further require a conservation of energy formulation.
Застосування до різного типу рідин
The general form of the equations of motion is not «ready for use», the stress tensor is still unknown so that more information is needed; this information is normally some knowledge of the viscous behavior of the fluid. For different types of fluid <g class="gr_ gr_6 gr-alert gr_gramm gr_inline_cards gr_run_anim Punctuation only-ins replaceWithoutSep" id="6" data-gr-id="6">flow</g> this results in specific forms of the Navier–Stokes equations.
Ньютонівська рідина
Стислива Ньютонівська рідина
Ньютонівські рідини випливають з спостереження, зробленого Ньютоном, що для більшості рідин,
Щоб застосувати це до рівнянь Нав'є — Стокса, Стокс зробив три припущення:
- Тензор напруги є лінійною функцією тензора швидкості деформації або еквівалентний градієнту швидкості.
- Рідина є ізотропною.
- Для рідини у стані спокою, має дорівнювати нулеві (у цьому випадку тиск у рідині рівний гідростатичному тиску).
The above list states the classic argument that the shear strain rate tensor (i.e. the (symmetric) shear part of the velocity gradient) is a pure shear tensor and does not include any inflow/outflow part (i.e. any compression/expansion part). This means that its trace is zero, and this is achieved by subtracting in a symmetric way from the diagonal elements of the tensor. The compressional contribution to viscous stress is added as a separate diagonal tensor.
Applying these assumptions will lead to:
That is, the deviatoric of the deformation rate tensor is identified to the deviatoric of the stress tensor, up to a factor μ.
is the Символ Кронекера. μ and λ are proportionality constants associated with the assumption that stress depends on strain linearly; μ is called the first coefficient of viscosity or shear viscosity (usually just called «viscosity») and λ is the second coefficient of viscosity or volume viscosity (and it is related to bulk viscosity). The value of λ, which produces a viscous effect associated with volume change, is very difficult to determine, not even its sign is known with absolute certainty. Even in compressible flows, the term involving λ is often negligible; however it can occasionally be important even in nearly incompressible flows and is a matter of controversy. When taken nonzero, the most common approximation is λ ≈ - ⅔ μ.
A straightforward substitution of into the momentum conservation equation will yield the Navier–Stokes equations, describing a compressible Newtonian fluid:
where the transpose has been used. The body force has been decomposed into density and external acceleration, i.e. . The associated mass continuity equation is:
In addition to this equation, an equation of state and an equation for the conservation of energy is needed. The equation of state to use depends on context (often the ideal gas law), the conservation of energy will read:
Here, is the enthalpy, is the temperature, and is a function representing the dissipation of energy due to viscous effects:
With a good equation of state and good functions for the dependence of parameters (such as viscosity) on the variables, this system of equations seems to properly model the dynamics of all known gases and most liquids.
Нестисненна Ньютонівська рідина
For the special (but very common) case of incompressible flow, the momentum equations simplify significantly. Taking into account the following assumptions:
- Viscosity will now be a constant
- The second viscosity effect
- The simplified mass continuity equation
then looking at the viscous terms of the momentum equation for example we have:
Similarly for the and momentum directions we have and .
The above solution is key to deriving Navier-Stokes equations from Equation of motion in fluid dynamics when density and viscosity are constant.
Не Ньютонівська рідина
A non-Newtonian fluid is a fluid whose flow properties differ in any way from those of Newtonian fluids. Most commonly the viscosity of non-Newtonian fluids is a function of shear rate or shear rate history. However, there are some non-Newtonian fluids with shear-independent viscosity, that nonetheless exhibit normal stress-differences or <g class="gr_ gr_10 gr-alert gr_gramm gr_hide gr_inline_cards gr_run_anim Grammar multiReplace replaceWithoutSep replaceWithoutSep" id="10" data-gr-id="10">other non-Newtonian <g class="gr_ gr_11 gr-alert gr_spell gr_inline_cards gr_run_anim ContextualSpelling multiReplace" id="11" data-gr-id="11">behaviour</g></g>. Many salt solutions and molten polymers are non-Newtonian fluids, as are many commonly found substances such as ketchup, custard, toothpaste, starch suspensions, paint, blood, and shampoo. In a Newtonian fluid, the relation between the shear stress and the shear rate is linear, passing through the origin, the constant of proportionality being the coefficient of viscosity. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is different, and can even be time-dependent. The study of the non-Newtonian fluids is usually called rheology. A few examples are given here.
Рідина Бінхема
In Bingham fluids, the situation is slightly different:
These are fluids capable of bearing some shear before they start flowing. Some common examples are toothpaste and clay.
Рідина що підкоряється степеневому закону
A power law fluid is an idealised fluid for which the shear stress, , is given by
This form is useful for approximating all sorts of general fluids, including shear thinning (such as latex paint) and shear thickening (such as corn starch water mixture).
Формулювання функції потоку
In the analysis of a flow, it is often desirable to reduce the number of equations or the number of variables being dealt with, or both. The incompressible Navier-Stokes equation with mass continuity (four equations in four unknowns) can, in fact, be reduced to a single equation with a single dependent variable in 2D, or one vector equation in 3D. This is enabled by two vector calculus identities:
for any differentiable scalar and vector . The first identity implies that any term in the Navier-Stokes equation that may be represented as the gradient of a scalar will disappear when the curl of the equation is taken. Commonly, pressure p and external acceleration g are what eliminate, resulting in (this is true in 2D as well as 3D):
where it's assumed that all body forces are describable as gradients (for example it is true for gravity), and density has been divided so that viscosity becomes kinematic viscosity.
The second vector calculus identity above states that the divergence of the curl of a vector field is zero. Since the (incompressible) mass continuity equation specifies the divergence of flow velocity being zero, we can replace the flow velocity with the curl of some vector so that mass continuity is always satisfied:
So, as long as flow velocity is represented through , mass continuity is unconditionally satisfied. With this new dependent vector variable, the Navier-Stokes equation (with curl taken as above) becomes a single fourth order vector equation, no longer containing the unknown pressure variable and no longer dependent on a separate mass continuity equation:
Apart from containing fourth order derivatives, this equation is fairly <g class="gr_ gr_5 gr-alert gr_gramm gr_inline_cards gr_run_anim Punctuation only-del replaceWithoutSep" id="5" data-gr-id="5">complicated,</g> and is thus uncommon. Note that if the cross differentiation is left out, the result is a third order vector equation containing an unknown vector field (the gradient of pressure) that may be determined from the same boundary conditions that one would apply to the fourth order equation above.
Прямокутні координати двовимірного потоку
The true utility of this formulation is seen when the flow is two dimensional in nature and the equation is written in a general orthogonal coordinate system, in other <g class="gr_ gr_6 gr-alert gr_gramm gr_inline_cards gr_run_anim Punctuation only-ins replaceWithoutSep" id="6" data-gr-id="6">words</g> a system where the basis vectors are orthogonal. Note that this by no means limits application to Cartesian coordinates, in <g class="gr_ gr_13 gr-alert gr_gramm gr_inline_cards gr_run_anim Punctuation only-ins replaceWithoutSep" id="13" data-gr-id="13">fact</g> most of the common coordinates systems are orthogonal, including familiar ones like cylindrical and obscure ones like toroidal.
The 3D flow velocity is expressed as (note that the discussion has been coordinate free up till now):
where are basis vectors, not necessarily constant and not necessarily normalized, and are flow velocity components; let also the coordinates of space be .
Now suppose that the flow is 2D. This doesn't mean the flow is in a plane, rather it means that the component of flow velocity in one direction is zero and the remaining components are independent of the same direction. In that case (take component 3 to be zero):
The vector function is still defined via:
but this must simplify in some way also since the flow is assumed 2D. If orthogonal coordinates are assumed, the curl takes on a fairly simple form, and the equation above expanded becomes:
Examining this equation shows that we can set and retain equality with no loss of generality, so that:
the significance here is that only one component of remains, so that 2D flow becomes a problem with only one dependent variable. The cross differentiated Navier–Stokes equation becomes two 0 = 0 equations and one meaningful equation.
The remaining component is called the stream function. The equation for can simplify since a variety of quantities will now equal zero, for example:
if the scale factors and also are independent of . Also, from the definition of the vector Laplacian
Manipulating the cross differentiated Navier–Stokes equation using the above two equations and a variety of identities will eventually yield the 1D scalar equation for the stream function:
where is the biharmonic operator. This is very useful because it is a single self-contained scalar equation that describes both momentum and mass conservation in 2D. The only other equations that this partial differential equation needs are initial and boundary conditions.
Derivation of the scalar stream function equation Distributing the curl:
Replacing curl of the curl with the Laplacian and expanding convection and viscosity:
Above, the curl of a gradient is zero, and the divergence of is zero. Negating:
Expanding the curl of the cross product into four terms:
Only one of four terms of the expanded curl is nonzero. The second is zero because it is the dot product of orthogonal vectors, the third is zero because it contains the divergence of flow velocity, and the fourth is zero because the divergence of a vector with only component three is zero (since it is assumed that nothing (except maybe ) depends on component three).
This vector equation is one meaningful scalar equation and two 0 = 0 equations.
The assumptions for the stream function equation are listed below:
- The flow is incompressible and Newtonian.
- Coordinates are orthogonal.
- Flow is 2D:
- The first two scale factors of the coordinate system are independent of the last coordinate: , otherwise extra terms appear.
The stream function has some useful properties:
- Since , the vorticity of the flow is just the negative of the Laplacian of the stream function.
- The level curves of the stream function are streamlines.
Тензор напружень
The derivation of the Navier-Stokes equation involves the consideration of forces acting on fluid elements, so that a quantity called the stress tensor appears naturally in the Cauchy momentum equation. Since the divergence of this tensor is taken, it is customary to write out the equation fully simplified, so that the original appearance of the stress tensor is lost.
However, the stress tensor still has some important uses, especially in formulating boundary conditions at fluid interfaces. Recalling that , for a Newtonian fluid the stress tensor is:
If the fluid is assumed to be incompressible, the tensor simplifies significantly. In 3D cartesian coordinates for example:
is the strain rate tensor, by definition:
Посилання
- Lebedev, Leonid P. (2003). Tensor Analysis. World Scientific. ISBN .
- Batchelor, 2000, с. 141.
- Morse, P.M. and Ingard, K.U. «Theoretical Acoustics», Princeton University Press (1968)
- Landau and Lifshitz, Fluid Mechanics, Second Edition: Volume 6 (Course of Theoretical Physics) page 45
- Batchelor, 2000, с. 144.
- . . MathWorld. Архів оригіналу за 11 листопада 2021. Процитовано 7 червня 2008.
- (2000). An Introduction to Fluid Dynamics. New York: Cambridge University Press. ISBN .
- White, Frank M. (2006). Viscous Fluid Flow (вид. 3rd). New York, NY: McGraw Hill. ISBN .
- Surface Tension Module [ 27 жовтня 2007 у Wayback Machine.], by John W. M. Bush, at MIT OCW.
- Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer 2011
<grammarly-btn>
</grammarly-btn>
На цю статтю не посилаються інші статті Вікіпедії. Будь ласка розставте посилання відповідно до . |
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Metoyu ciyeyi statti ye visvitlennya vazhlivih momentiv vivedennya rivnyan Nav ye Stoksa a takozh jogo zastosuvannya ta formulyuvannya dlya riznih simejstv ridin Osnovni pripushennyaRivnyannya Nav ye Stoksa gruntuyutsya na pripushenni sho ridina v masshtabah interesu ye kontinuumom inakshe kazhuchi vona ne skladayetsya z diskretnih chastok a ye sucilnoyu rechovinoyu Inshe neobhidne pripushennya polyagaye v tomu sho vsi polya sho predstavlyayut interes yak tisk shvidkist potoku shilnist i temperatura diferencijovani prinajmni mayut slabku pohidnu Rivnyannya vihodyat z osnovnih principiv nerozrivnosti masi impulsu ta energiyi Dlya cogo inodi neobhidno rozglyanuti kincevij dovilnij ob yem yakij nazivayetsya kontrolnim ob yemom do yakogo ci principi mozhut buti zastosovani Cej kincevij ob yem poznachayetsya literoyu W displaystyle Omega a jogo granichna poverhnya d W displaystyle delta Omega Kontrolnij ob yem mozhe zalishatisya fiksovanim u prostori i mozhe ruhatisya razom z ridinoyu Materialna pohidnaZmina vlastivostej ruhomoyi ridini mozhe buti vimiryati dvoma riznimi sposobami Mozhna vimiryati danu vlastivist u fiksovanij tochci v prostori koli chastinki ridini prohodyat kriz neyi abo slidkuyuchi za chastinkami ridini sho ruhayutsya uzdovzh liniyi toku Pohidna polya vid fiksovanogo polozhennya v prostori nazivayetsya pohidnoyu Ejlera a pohidna sho sliduye za ruhomoyu dilyankoyu nazivayetsya advektivnoyu abo materialnoyu lagranzhevoyu pohidnoyu Materialna pohidna viznachayetsya yak nelinijnij operator D D t d e f t u displaystyle frac D Dt stackrel mathrm def frac partial partial t mathbf u cdot nabla de u displaystyle mathbf u ye shvidkist toku ridini Pershij chlen u pravij chastini rivnyannya ye zvichajnoyu evlerivskoyu pohidnoyu tobto pohidnoyu v fiksovanij sistemi vidliku sho predstavlyaye zmini v tochci za chasom todi yak drugij chlen yavlyaye soboyu zminu vlastivosti vidnosno poziciyi div advekciya Cya osobliva pohidna naspravdi ye zvichajnoyu pohidnoyu vid funkciyi bagatoh zminnih vzdovzh linij toku ridini vona mozhe buti otrimanij shlyahom zastosuvannya lancyugogogo pravila v yakomu vkonuyetsya diferenciyuvannya vsih nezalezhnih zminnih po cherzi uzdovzh linij toku tobto vikonuyetsya obchislennya zagalnoyi pohidnoyi uzdovzh linij toku Napriklad vimiryuvannya zmin shvidkosti vitru v atmosferi mozhna otrimati za dopomogoyu anemometra na meteostanciyi abo sposterigayuchi za ruhom metiozondu Anemometr v pershomu vipadku ce vimiryuvannya shvidkosti vsih ruhomih chastok sho prohodyat povz fiksovanu tochku v prostori todi yak u drugomu vipadku metiozond vimiryuye zmini shvidkosti ruhayuchis razom z potokom Rivnyannya neperervnostiRivnyannya Nav ye Stoksa ye specialnim rivnyannyam neperervnosti Rivnyannya neperervnosti mozhna vivesti z principiv zberezhennya Masa Impuls Energiya Ce robitsya za dopomogoyu rivnyannya nerozrivnosti sho yavlyaye soboyu integralne spivvidnoshennya yake viznachaye sho shvidkist zmini pohidna integralu na deyakomu kontrolnomu ob yemi W displaystyle Omega vid deyakoyi funkciyi ϕ displaystyle phi povinna dorivnyuvati sumarnim vitratam potoku pritok i vidtok cherez granicyu kontrolnogo ob yemu sho poznachayetsya G displaystyle Gamma plyus sumarnim vitratam pritok i vidtok elementarnih dzherel i stokiv useredeni kontrolnogo ob yemu Ce virazhayetsya nastupnim integralnim rivnyannyam nerozrivnosti d d t W ϕ d W G ϕ u n d G W s d W displaystyle frac d dt int Omega phi d Omega int Gamma phi mathbf u cdot n d Gamma int Omega s d Omega de u displaystyle mathbf u ce shvidkist toku ridini n displaystyle mathbf n ce odinichnij vektor zovnishnoyi normali i s displaystyle s predstavlyaye soboyu elementarne dzherelo abo elementarnij stik ridini vvazhayuchi sho s displaystyle s dlya stoku maye pozitivnij znak Formula Ostrogradskogo mozhe buti vikoristana dlya perehodu vid integralu po poverhni do integralu po ob yemu d d t W ϕ d W W ϕ u d W W s d W displaystyle frac d dt int Omega phi d Omega int Omega nabla cdot phi mathbf u d Omega int Omega s d Omega Zastosovuyuchi teoremu Rejnoldsa pro perenesennya do livoyi chastini rivnyannya i ob yednuyuchi vsi intergali otrimayemo W ϕ t d W W ϕ u d W W s d W W ϕ t ϕ u s d W 0 displaystyle int Omega frac partial phi partial t d Omega int Omega nabla cdot phi mathbf u d Omega int Omega s d Omega qquad Rightarrow qquad int Omega left frac partial phi partial t nabla cdot phi mathbf u s right d Omega 0 Integral maye dorivnyuvati nulyu dlya bud yakogo kontrolnogo ob yemu a cya umova u svoyu chergu vikonuyetsya koli pidintegralnij viraz sam dorivnyuye nulevi ϕ t ϕ u s 0 displaystyle frac partial phi partial t nabla cdot phi mathbf u s 0 Z cogo vazhlivogo spivvidnoshennya duzhe zagalne rivnyannya neperervnosti mozhut buti stislo napisani tri vazhlivi ponyattya zberezhennya masi zberezhennya impulsu ta zberezhennya energiyi Spravedlivist cogo zberigayetsya yaksho f ye vektorom v comu vipadku druga chastina pohidna vektor vektornij dobutoku stane Diadoyu Rivnyannya zberezhennya impulsu Zastosovuyuchi zakon zberezhennya impulsu do potoku ridini mozhna otrimati u zagalnomu viglyadi rivnyannya zberezhennya impulsu dlya potoku Yaksho intensivna vlastivist f taka vlastivist sho ne zalezhit vid kilkosti rechovini ye potokom masi abo potokom pitomogo impulsu to zaminyuyuchi yiyi na dobutok gustini i shvidkosti potoku r u displaystyle rho mathbf u otrimayemo rivnyannya t r u r u u s displaystyle frac partial partial t rho mathbf u nabla cdot rho mathbf u mathbf u mathbf s de u u displaystyle mathbf u mathbf u ye diadoyu specialnim vipadkom tenzornogo dobutku rezultatom yakogo ye tenzor drugogo rangu divergenciya tenzoru drugogo rangu ye vektor tenzor pershogo rangu Rozkrivayuchi duzhki koristuyuchis pravilom pohidnoyi vid dobutku otrimayemo rivnyannyaZh u r t r u t u u r r u u r u u s displaystyle mathbf u frac partial rho partial t rho frac partial mathbf u partial t mathbf u mathbf u cdot nabla rho rho mathbf u cdot nabla mathbf u rho mathbf u nabla cdot mathbf u mathbf s Zvernit uvagu na te sho gradiyent vektoru ye specialnim vipadkom kovariantnoyi pohidnoyi sho v rezultati daye tenzor drugogo rangu za vinyatkom Dekartovoyi sistemi koordinat Vazhlivo rozumiti sho ce ne ye prosto gradiyentom sho obchislyuyetsya poelementno Prijmayuchi ce do uvagi matimemo u r r u r u displaystyle mathbf u cdot nabla rho rho nabla cdot mathbf u nabla cdot rho mathbf u u r t u r r u r u t u u s displaystyle mathbf u left frac partial rho partial t mathbf u cdot nabla rho rho nabla cdot mathbf u right rho left frac partial mathbf u partial t mathbf u cdot nabla mathbf u right mathbf s u r t r u r u t u u s displaystyle mathbf u left frac partial rho partial t nabla cdot rho mathbf u right rho left frac partial mathbf u partial t mathbf u cdot nabla mathbf u right mathbf s Viraz u livij duzhci dorivnyuye zgidno rivnyannya neperervnosti massi dlya danogo mometnu chasu nulyu The leftmost expression enclosed in parentheses is by mass continuity shown in a moment equal to zero Zauvazhte sho reshta livoyi chastini rivnyannya ye pohidnoyu Lagranzha individualnoyu abo substancionalnoyu pohidnoyu r u t u u s displaystyle rho left frac partial mathbf u partial t mathbf u cdot nabla mathbf u right mathbf s cej viraz vikoristovuyuchi operator pohidnoyi Lagranzha zapishetsya r D u D t s displaystyle qquad rho frac D mathbf u Dt mathbf s Cej vraz po suti ye dugim zakonom Nyutona F ma z tochki zoru ob yemnih a ne tochkovih sil Kozhen chlen rivnyan Nav ye Stoksa ye ob yemnoyu siloyu Korotshij hoch i mensh retelnij sposib otrimannya cogo rezultatu ye zastosuvannya lancyugovogo pravila shodo funkciyi priskorennya r d d t u x y z t s r u t u x d x d t u y d y d t u z d z d t s r u t u u x v u y w u z s r u t u u s displaystyle begin aligned rho frac d dt mathbf u x y z t mathbf s qquad amp Rightarrow qquad rho left frac partial mathbf u partial t frac partial mathbf u partial x frac dx dt frac partial mathbf u partial y frac dy dt frac partial mathbf u partial z frac dz dt right mathbf s qquad amp Rightarrow qquad rho left frac partial mathbf u partial t u frac partial mathbf u partial x v frac partial mathbf u partial y w frac partial mathbf u partial z right mathbf s qquad amp Rightarrow qquad rho left frac partial mathbf u partial t mathbf u cdot nabla mathbf u right mathbf s end aligned de u u v w displaystyle mathbf u u v w ye funkciyeyu shvidkosti Prichinoyu togo sho cej metod ye nedostatno retelnij ye toj fakt sho mi ne pokazali sho vibir u d x d t d y d t d z d t displaystyle mathbf u left frac dx dt frac dy dt frac dz dt right ye korektnim odnak ce maye sens tomu sho z takij vibir pohidnoyi ye naslidkom ponyattya chastinki ridini a dlya togo shob drugij zakon Nyutona pracyuvav sili u ridini slid pidsumovuvati rozglyadayuchi rininu sho skladayetsya iz chastinok Dlya cogo konvektivna pohidna takozh vidoma yak pohidna chastki ridini Rivnyannya zberezhennya masi Takozh mozhna rozglyanuti masu Prijmayuchi Q 0 displaystyle Q 0 vidsutnye dzherela abo stok i vvodyachi gustinu ridini r t r u 0 displaystyle frac partial rho partial t nabla cdot rho mathbf u 0 der displaystyle rho ye gustinoyu massa u odinici ob yemu i u displaystyle mathbf u ye shvidkistyu potoku ridini Ce rivnyannya nazivayetsya rivnyannyam nerozrivnosti massi obo prosto rivnyannyam nerozrivnosti Ce rivnyannya zazvichaj suprovodzhuye rivnyannya Nav ye Stoksa U razi nestislivoyi ridini D r D t 0 displaystyle frac D rho Dt 0 tobto shilnist uzdovzh linij toku ridini ye staloyu i rivnyannya zmenshuyetsya do rivnyannya u 0 displaystyle nabla cdot mathbf u 0 sho virazhaye zberezhennya ob yemu ridini Rivnyannya zberezhennya impulsu u formi KoshiCya stattya mistit neperekladeni fragmenti inozemnoyu movoyu Vi mozhete dopomogti proyektu pereklavshi yih ukrayinskoyu The generic density of the momentum source s displaystyle mathbf s seen previously is made specific first by breaking it up into two new terms one to describe surface forces and one for body forces such as gravity By examining the forces acting on a small cube in a fluid it may be shown that r D u D t s f displaystyle rho frac D mathbf u Dt nabla cdot boldsymbol sigma mathbf f where s displaystyle boldsymbol sigma is the Cauchy stress tensor and f displaystyle mathbf f accounts for body forces present This equation is called the Cauchy momentum equation and describes the non relativistic momentum conservation of any continuum that conserves mass s displaystyle boldsymbol sigma is a rank two symmetric tensor given by its covariant components In orthogonal coordinates in three dimensions it is represented as the 3x3 matrix s i j s x x t x y t x z t y x s y y t y z t z x t z y s z z displaystyle sigma ij begin pmatrix sigma xx amp tau xy amp tau xz tau yx amp sigma yy amp tau yz tau zx amp tau zy amp sigma zz end pmatrix where the s displaystyle sigma are normal stresses and t displaystyle tau shear stresses This matrix is split up into two terms s i j s x x t x y t x z t y x s y y t y z t z x t z y s z z p 0 0 0 p 0 0 0 p s x x p t x y t x z t y x s y y p t y z t z x t z y s z z p p I t displaystyle sigma ij begin pmatrix sigma xx amp tau xy amp tau xz tau yx amp sigma yy amp tau yz tau zx amp tau zy amp sigma zz end pmatrix begin pmatrix p amp 0 amp 0 0 amp p amp 0 0 amp 0 amp p end pmatrix begin pmatrix sigma xx p amp tau xy amp tau xz tau yx amp sigma yy p amp tau yz tau zx amp tau zy amp sigma zz p end pmatrix pI boldsymbol tau where I displaystyle I is the 3 x 3 identity matrix and t displaystyle boldsymbol tau is the deviatoric stress tensor Note that the mechanical pressure p is equal to minus the mean normal stress p 1 3 s x x s y y s z z displaystyle p frac 1 3 left sigma xx sigma yy sigma zz right The motivation for doing this is that pressure is typically a variable of interest and also this simplifies application to specific fluid families later on since the rightmost tensor t displaystyle boldsymbol tau in the equation above must be zero for a fluid at rest Note that t displaystyle boldsymbol tau is traceless The Cauchy equation may now be written in another more explicit form r D u D t p t f displaystyle rho frac D mathbf u Dt nabla p nabla cdot boldsymbol tau mathbf f This equation is still incomplete For completion one must make hypotheses on the forms of t displaystyle boldsymbol tau and p displaystyle p that is one needs a constitutive law for the stress tensor which can be obtained for specific fluid families and on the pressure Some of these hypotheses bring to Euler equations fluid dynamics other ones bring to Navier Stokes equations Additionally if the flow is assumed compressible an equation of state will be required which will likely further require a conservation of energy formulation Zastosuvannya do riznogo tipu ridinThe general form of the equations of motion is not ready for use the stress tensor is still unknown so that more information is needed this information is normally some knowledge of the viscous behavior of the fluid For different types of fluid lt g class gr gr 6 gr alert gr gramm gr inline cards gr run anim Punctuation only ins replaceWithoutSep id 6 data gr id 6 gt flow lt g gt this results in specific forms of the Navier Stokes equations Nyutonivska ridina Stisliva Nyutonivska ridina Nyutonivski ridini viplivayut z sposterezhennya zroblenogo Nyutonom sho dlya bilshosti ridin t u y displaystyle tau propto frac partial u partial y Shob zastosuvati ce do rivnyan Nav ye Stoksa Stoks zrobiv tri pripushennya Tenzor naprugi ye linijnoyu funkciyeyu tenzora shvidkosti deformaciyi abo ekvivalentnij gradiyentu shvidkosti Ridina ye izotropnoyu Dlya ridini u stani spokoyu t displaystyle nabla cdot boldsymbol tau maye dorivnyuvati nulevi u comu vipadku tisk u ridini rivnij gidrostatichnomu tisku The above list states the classic argument that the shear strain rate tensor i e the symmetric shear part of the velocity gradient is a pure shear tensor and does not include any inflow outflow part i e any compression expansion part This means that its trace is zero and this is achieved by subtracting u displaystyle nabla cdot mathbf u in a symmetric way from the diagonal elements of the tensor The compressional contribution to viscous stress is added as a separate diagonal tensor Applying these assumptions will lead to t i j m u i x j u j x i 2 3 d i j u k x k d i j l u k x k displaystyle tau ij mu left frac partial u i partial x j frac partial u j partial x i tfrac 2 3 delta ij frac partial u k partial x k right delta ij lambda frac partial u k partial x k That is the deviatoric of the deformation rate tensor is identified to the deviatoric of the stress tensor up to a factor m d i j displaystyle delta ij is the Simvol Kronekera m and l are proportionality constants associated with the assumption that stress depends on strain linearly m is called the first coefficient of viscosity or shear viscosity usually just called viscosity and l is the second coefficient of viscosity or volume viscosity and it is related to bulk viscosity The value of l which produces a viscous effect associated with volume change is very difficult to determine not even its sign is known with absolute certainty Even in compressible flows the term involving l is often negligible however it can occasionally be important even in nearly incompressible flows and is a matter of controversy When taken nonzero the most common approximation is l m A straightforward substitution of t i j displaystyle tau ij into the momentum conservation equation will yield the Navier Stokes equations describing a compressible Newtonian fluid r u t u u p m u u T l 2 m 3 u I r g displaystyle rho left frac partial mathbf u partial t mathbf u cdot nabla mathbf u right nabla p nabla cdot left mu nabla mathbf u nabla mathbf u T right nabla cdot left left lambda frac 2 mu 3 right left nabla cdot mathbf u right mathbf I right rho mathbf g where the transpose has been used The body force has been decomposed into density and external acceleration i e f r g displaystyle mathbf f rho mathbf g The associated mass continuity equation is r t r u 0 displaystyle frac partial rho partial t nabla cdot rho mathbf u 0 In addition to this equation an equation of state and an equation for the conservation of energy is needed The equation of state to use depends on context often the ideal gas law the conservation of energy will read r D h D t D p D t k T F displaystyle rho frac Dh Dt frac Dp Dt nabla cdot k nabla T Phi Here h displaystyle h is the enthalpy T displaystyle T is the temperature and F displaystyle Phi is a function representing the dissipation of energy due to viscous effects F m 2 u x 2 2 v y 2 2 w z 2 v x u y 2 w y v z 2 u z w x 2 l u 2 displaystyle Phi mu left 2 left frac partial u partial x right 2 2 left frac partial v partial y right 2 2 left frac partial w partial z right 2 left frac partial v partial x frac partial u partial y right 2 left frac partial w partial y frac partial v partial z right 2 left frac partial u partial z frac partial w partial x right 2 right lambda nabla cdot mathbf u 2 With a good equation of state and good functions for the dependence of parameters such as viscosity on the variables this system of equations seems to properly model the dynamics of all known gases and most liquids Nestisnenna Nyutonivska ridina For the special but very common case of incompressible flow the momentum equations simplify significantly Taking into account the following assumptions Viscosity m displaystyle mu will now be a constant The second viscosity effect l 0 displaystyle lambda 0 The simplified mass continuity equation u 0 displaystyle nabla cdot mathbf u 0 then looking at the viscous terms of the x displaystyle x momentum equation for example we have x 2 m u x l u y m u y v x z m u z w x 2 m 2 u x 2 m 2 u y 2 m 2 v y x m 2 u z 2 m 2 w z x m 2 u x 2 m 2 u y 2 m 2 u z 2 m 2 u x 2 m 2 v y x m 2 w z x m 2 u m x u x v y w z 0 m 2 u displaystyle begin aligned amp frac partial partial x left 2 mu frac partial u partial x lambda nabla cdot mathbf u right frac partial partial y left mu left frac partial u partial y frac partial v partial x right right frac partial partial z left mu left frac partial u partial z frac partial w partial x right right amp 2 mu frac partial 2 u partial x 2 mu frac partial 2 u partial y 2 mu frac partial 2 v partial y partial x mu frac partial 2 u partial z 2 mu frac partial 2 w partial z partial x amp mu frac partial 2 u partial x 2 mu frac partial 2 u partial y 2 mu frac partial 2 u partial z 2 mu frac partial 2 u partial x 2 mu frac partial 2 v partial y partial x mu frac partial 2 w partial z partial x amp mu nabla 2 u mu frac partial partial x cancelto 0 left frac partial u partial x frac partial v partial y frac partial w partial z right mu nabla 2 u end aligned Similarly for the y displaystyle y and z displaystyle z momentum directions we have m 2 v displaystyle mu nabla 2 v and m 2 w displaystyle mu nabla 2 w The above solution is key to deriving Navier Stokes equations from Equation of motion in fluid dynamics when density and viscosity are constant Ne Nyutonivska ridina A non Newtonian fluid is a fluid whose flow properties differ in any way from those of Newtonian fluids Most commonly the viscosity of non Newtonian fluids is a function of shear rate or shear rate history However there are some non Newtonian fluids with shear independent viscosity that nonetheless exhibit normal stress differences or lt g class gr gr 10 gr alert gr gramm gr hide gr inline cards gr run anim Grammar multiReplace replaceWithoutSep replaceWithoutSep id 10 data gr id 10 gt other non Newtonian lt g class gr gr 11 gr alert gr spell gr inline cards gr run anim ContextualSpelling multiReplace id 11 data gr id 11 gt behaviour lt g gt lt g gt Many salt solutions and molten polymers are non Newtonian fluids as are many commonly found substances such as ketchup custard toothpaste starch suspensions paint blood and shampoo In a Newtonian fluid the relation between the shear stress and the shear rate is linear passing through the origin the constant of proportionality being the coefficient of viscosity In a non Newtonian fluid the relation between the shear stress and the shear rate is different and can even be time dependent The study of the non Newtonian fluids is usually called rheology A few examples are given here Ridina Binhema In Bingham fluids the situation is slightly different u y 0 t lt t 0 t t 0 m t t 0 displaystyle frac partial u partial y left begin matrix 0 amp quad tau lt tau 0 tau tau 0 mu amp quad tau geq tau 0 end matrix right These are fluids capable of bearing some shear before they start flowing Some common examples are toothpaste and clay Ridina sho pidkoryayetsya stepenevomu zakonu A power law fluid is an idealised fluid for which the shear stress t displaystyle tau is given by t K u y n displaystyle tau K left frac partial u partial y right n This form is useful for approximating all sorts of general fluids including shear thinning such as latex paint and shear thickening such as corn starch water mixture Formulyuvannya funkciyi potokuIn the analysis of a flow it is often desirable to reduce the number of equations or the number of variables being dealt with or both The incompressible Navier Stokes equation with mass continuity four equations in four unknowns can in fact be reduced to a single equation with a single dependent variable in 2D or one vector equation in 3D This is enabled by two vector calculus identities ϕ 0 displaystyle nabla times nabla phi 0 A 0 displaystyle nabla cdot nabla times mathbf A 0 for any differentiable scalar ϕ displaystyle phi and vector A displaystyle mathbf A The first identity implies that any term in the Navier Stokes equation that may be represented as the gradient of a scalar will disappear when the curl of the equation is taken Commonly pressure p and external acceleration g are what eliminate resulting in this is true in 2D as well as 3D u t u u n 2 u displaystyle nabla times left frac partial mathbf u partial t mathbf u cdot nabla mathbf u right nu nabla times nabla 2 mathbf u where it s assumed that all body forces are describable as gradients for example it is true for gravity and density has been divided so that viscosity becomes kinematic viscosity The second vector calculus identity above states that the divergence of the curl of a vector field is zero Since the incompressible mass continuity equation specifies the divergence of flow velocity being zero we can replace the flow velocity with the curl of some vector ps displaystyle vec psi so that mass continuity is always satisfied u 0 ps 0 0 0 displaystyle nabla cdot mathbf u 0 quad Rightarrow quad nabla cdot nabla times vec psi 0 quad Rightarrow quad 0 0 So as long as flow velocity is represented through u ps displaystyle mathbf u nabla times vec psi mass continuity is unconditionally satisfied With this new dependent vector variable the Navier Stokes equation with curl taken as above becomes a single fourth order vector equation no longer containing the unknown pressure variable and no longer dependent on a separate mass continuity equation t ps ps ps n 2 ps displaystyle nabla times left frac partial partial t nabla times vec psi nabla times vec psi cdot nabla nabla times vec psi right nu nabla times nabla 2 nabla times vec psi Apart from containing fourth order derivatives this equation is fairly lt g class gr gr 5 gr alert gr gramm gr inline cards gr run anim Punctuation only del replaceWithoutSep id 5 data gr id 5 gt complicated lt g gt and is thus uncommon Note that if the cross differentiation is left out the result is a third order vector equation containing an unknown vector field the gradient of pressure that may be determined from the same boundary conditions that one would apply to the fourth order equation above Pryamokutni koordinati dvovimirnogo potoku The true utility of this formulation is seen when the flow is two dimensional in nature and the equation is written in a general orthogonal coordinate system in other lt g class gr gr 6 gr alert gr gramm gr inline cards gr run anim Punctuation only ins replaceWithoutSep id 6 data gr id 6 gt words lt g gt a system where the basis vectors are orthogonal Note that this by no means limits application to Cartesian coordinates in lt g class gr gr 13 gr alert gr gramm gr inline cards gr run anim Punctuation only ins replaceWithoutSep id 13 data gr id 13 gt fact lt g gt most of the common coordinates systems are orthogonal including familiar ones like cylindrical and obscure ones like toroidal The 3D flow velocity is expressed as note that the discussion has been coordinate free up till now u u 1 e 1 u 2 e 2 u 3 e 3 displaystyle mathbf u u 1 mathbf e 1 u 2 mathbf e 2 u 3 mathbf e 3 where e i displaystyle mathbf e i are basis vectors not necessarily constant and not necessarily normalized and u i displaystyle u i are flow velocity components let also the coordinates of space be x 1 x 2 x 3 displaystyle x 1 x 2 x 3 Now suppose that the flow is 2D This doesn t mean the flow is in a plane rather it means that the component of flow velocity in one direction is zero and the remaining components are independent of the same direction In that case take component 3 to be zero u u 1 e 1 u 2 e 2 displaystyle mathbf u u 1 mathbf e 1 u 2 mathbf e 2 u 1 x 3 u 2 x 3 0 displaystyle frac partial u 1 partial x 3 frac partial u 2 partial x 3 0 The vector function ps displaystyle vec psi is still defined via u ps displaystyle mathbf u nabla times vec psi but this must simplify in some way also since the flow is assumed 2D If orthogonal coordinates are assumed the curl takes on a fairly simple form and the equation above expanded becomes u 1 e 1 u 2 e 2 e 1 h 2 h 3 x 2 h 3 ps 3 x 3 h 2 ps 2 e 2 h 3 h 1 x 3 h 1 ps 1 x 1 h 3 ps 3 e 3 h 1 h 2 x 1 h 2 ps 2 x 2 h 1 ps 1 displaystyle u 1 mathbf e 1 u 2 mathbf e 2 frac mathbf e 1 h 2 h 3 left frac partial partial x 2 left h 3 psi 3 right frac partial partial x 3 left h 2 psi 2 right right frac mathbf e 2 h 3 h 1 left frac partial partial x 3 left h 1 psi 1 right frac partial partial x 1 left h 3 psi 3 right right frac mathbf e 3 h 1 h 2 left frac partial partial x 1 left h 2 psi 2 right frac partial partial x 2 left h 1 psi 1 right right Examining this equation shows that we can set ps 1 ps 2 0 displaystyle psi 1 psi 2 0 and retain equality with no loss of generality so that u 1 e 1 u 2 e 2 e 1 h 2 h 3 x 2 h 3 ps 3 e 2 h 3 h 1 x 1 h 3 ps 3 displaystyle u 1 mathbf e 1 u 2 mathbf e 2 frac mathbf e 1 h 2 h 3 frac partial partial x 2 left h 3 psi 3 right frac mathbf e 2 h 3 h 1 frac partial partial x 1 left h 3 psi 3 right the significance here is that only one component of ps displaystyle vec psi remains so that 2D flow becomes a problem with only one dependent variable The cross differentiated Navier Stokes equation becomes two 0 0 equations and one meaningful equation The remaining component ps 3 ps displaystyle psi 3 psi is called the stream function The equation for ps displaystyle psi can simplify since a variety of quantities will now equal zero for example ps 1 h 1 h 2 h 3 x 3 ps h 1 h 2 0 displaystyle nabla cdot vec psi frac 1 h 1 h 2 h 3 frac partial partial x 3 left psi h 1 h 2 right 0 if the scale factors h 1 displaystyle h 1 and h 2 displaystyle h 2 also are independent of x 3 displaystyle x 3 Also from the definition of the vector Laplacian ps ps 2 ps 2 ps displaystyle nabla times nabla times vec psi nabla nabla cdot vec psi nabla 2 vec psi nabla 2 vec psi Manipulating the cross differentiated Navier Stokes equation using the above two equations and a variety of identities will eventually yield the 1D scalar equation for the stream function t 2 ps ps 2 ps n 4 ps displaystyle frac partial partial t nabla 2 psi nabla times vec psi cdot nabla nabla 2 psi nu nabla 4 psi where 4 displaystyle nabla 4 is the biharmonic operator This is very useful because it is a single self contained scalar equation that describes both momentum and mass conservation in 2D The only other equations that this partial differential equation needs are initial and boundary conditions Derivation of the scalar stream function equation Distributing the curl t ps ps ps n 2 ps displaystyle frac partial partial t nabla times nabla times vec psi nabla times left nabla times vec psi cdot nabla nabla times vec psi right nu nabla times nabla 2 nabla times vec psi Replacing curl of the curl with the Laplacian and expanding convection and viscosity t 2 ps ps ps 2 ps ps n 2 ps 4 ps displaystyle frac partial partial t nabla 2 vec psi nabla times left nabla left frac nabla times vec psi cdot nabla times vec psi 2 right left nabla times nabla times vec psi right times nabla times vec psi right nu nabla 2 nabla nabla cdot vec psi nabla 4 vec psi Above the curl of a gradient is zero and the divergence of ps displaystyle vec psi is zero Negating t 2 ps 2 ps ps n 4 ps displaystyle frac partial partial t nabla 2 vec psi nabla times left nabla 2 vec psi times nabla times vec psi right nu nabla 4 vec psi Expanding the curl of the cross product into four terms t 2 ps ps 2 ps 2 ps ps 2 ps ps ps 2 ps n 4 ps displaystyle frac partial partial t nabla 2 vec psi nabla times vec psi cdot nabla nabla 2 vec psi nabla 2 vec psi cdot nabla nabla times vec psi nabla 2 vec psi nabla cdot nabla times vec psi nabla times vec psi nabla cdot nabla 2 vec psi nu nabla 4 vec psi Only one of four terms of the expanded curl is nonzero The second is zero because it is the dot product of orthogonal vectors the third is zero because it contains the divergence of flow velocity and the fourth is zero because the divergence of a vector with only component three is zero since it is assumed that nothing except maybe h 3 displaystyle h 3 depends on component three t 2 ps ps 2 ps n 4 ps displaystyle frac partial partial t nabla 2 vec psi nabla times vec psi cdot nabla nabla 2 vec psi nu nabla 4 vec psi This vector equation is one meaningful scalar equation and two 0 0 equations The assumptions for the stream function equation are listed below The flow is incompressible and Newtonian Coordinates are orthogonal Flow is 2D u 3 u 1 x 3 u 2 x 3 0 displaystyle u 3 frac partial u 1 partial x 3 frac partial u 2 partial x 3 0 The first two scale factors of the coordinate system are independent of the last coordinate h 1 x 3 h 2 x 3 0 displaystyle frac partial h 1 partial x 3 frac partial h 2 partial x 3 0 otherwise extra terms appear The stream function has some useful properties Since 2 ps ps u displaystyle nabla 2 vec psi nabla times nabla times vec psi nabla times mathbf u the vorticity of the flow is just the negative of the Laplacian of the stream function The level curves of the stream function are streamlines Tenzor napruzhenThe derivation of the Navier Stokes equation involves the consideration of forces acting on fluid elements so that a quantity called the stress tensor appears naturally in the Cauchy momentum equation Since the divergence of this tensor is taken it is customary to write out the equation fully simplified so that the original appearance of the stress tensor is lost However the stress tensor still has some important uses especially in formulating boundary conditions at fluid interfaces Recalling that s p I t displaystyle sigma pi I boldsymbol tau for a Newtonian fluid the stress tensor is s i j p d i j m u i x j u j x i d i j l u displaystyle sigma ij p delta ij mu left frac partial u i partial x j frac partial u j partial x i right delta ij lambda nabla cdot mathbf u If the fluid is assumed to be incompressible the tensor simplifies significantly In 3D cartesian coordinates for example s p 0 0 0 p 0 0 0 p m 2 u x u y v x u z w x v x u y 2 v y v z w y w x u z w y v z 2 w z p I m u u T p I 2 m e displaystyle begin aligned sigma amp begin pmatrix p amp 0 amp 0 0 amp p amp 0 0 amp 0 amp p end pmatrix mu begin pmatrix 2 displaystyle frac partial u partial x amp displaystyle frac partial u partial y frac partial v partial x amp displaystyle frac partial u partial z frac partial w partial x displaystyle frac partial v partial x frac partial u partial y amp 2 displaystyle frac partial v partial y amp displaystyle frac partial v partial z frac partial w partial y displaystyle frac partial w partial x frac partial u partial z amp displaystyle frac partial w partial y frac partial v partial z amp 2 displaystyle frac partial w partial z end pmatrix amp pI mu nabla mathbf u nabla mathbf u T pI 2 mu e end aligned e displaystyle e is the strain rate tensor by definition e i j 1 2 u i x j u j x i displaystyle e ij frac 1 2 left frac partial u i partial x j frac partial u j partial x i right PosilannyaLebedev Leonid P 2003 Tensor Analysis World Scientific ISBN 981 238 360 3 Batchelor 2000 s 141 Morse P M and Ingard K U Theoretical Acoustics Princeton University Press 1968 Landau and Lifshitz Fluid Mechanics Second Edition Volume 6 Course of Theoretical Physics page 45 Batchelor 2000 s 144 MathWorld Arhiv originalu za 11 listopada 2021 Procitovano 7 chervnya 2008 2000 An Introduction to Fluid Dynamics New York Cambridge University Press ISBN 978 0 521 66396 0 White Frank M 2006 Viscous Fluid Flow vid 3rd New York NY McGraw Hill ISBN 0 07 240231 8 Surface Tension Module 27 zhovtnya 2007 u Wayback Machine by John W M Bush at MIT OCW Galdi An Introduction to the Mathematical Theory of the Navier Stokes Equations Steady State Problems Springer 2011 lt grammarly btn gt lt grammarly btn gt Na cyu stattyu ne posilayutsya inshi statti Vikipediyi Bud laska rozstavte posilannya vidpovidno do prijnyatih rekomendacij