У комп'ютерному зорі матриця камери або матриця проєкції (камери) є матрицею , яка описує відображення стенопа від 3D-точок в світі, до 2D-точок зображення. Нехай — представлення тривимірної точки в однорідних координатах (чотиривимірний вектор), і нехай буде представленням зображення цієї точки в стенопі (3-вимірний вектор). Тоді має місце наступне співвідношення
де — це матриця камери, а знак, що означає, що ліва і права частини рівності рівні ненульовому скалярному множенню.
Так як матриця камери бере участь у відображенні між елементами двох проєктивних просторів, її теж можна розглядати як проєктивний елемент. Це означає, що у неї є тільки 11 ступенів свободи, так як будь-яке множення на ненульовий скаляр призводить до еквівалентної матриці камери.
Походження
Відображення координат тривимірної точки P на координати двовимірного зображення проєкції точки на площину зображення, відповідно до моделі стенопа, дається формулою
де є тривимірними координатами P щодо централізованої системи координат камери, — отримані координати зображення, f — фокусна відстань камери, для якої передбачається, що f > 0. Крім того, ми також припускаємо, що x3 > 0.
Для отримання матриці камери цей вираз переписується в термінах однорідних координат. Замість двовимірного вектора розглянемо проєктивний елемент (3D-вектор) та замість рівності розглядаємо рівність з точністю до масштабування на ненульове число, що позначається . Спочатку ми записуємо координати однорідного зображення у вигляді виразів в звичайних тривимірних координатах.
Нарешті, також тривимірні координати виражаються в однорідному представленні , і ось як виглядає матриця камери:
- чи
де матриця камери, яка дається формулою
- ,
і відповідна матриця камери тепер стає
Останній крок є наслідком того, що сам по собі є проєктивним елементом.
Виведена тут матриця камери може здатися тривіальною в тому сенсі, що вона містить дуже мало ненульових елементів. Це в значній мірі залежить від конкретних систем координат, які були обрані для 3D і 2D точок. На практиці, однак, інші форми матриць камер є загальними, що буде показано нижче.
Положення камери
Матриця камери , отримана в попередньому розділі, має нульовий простір, натягнуте на вектор
Це також однорідне уявлення тривимірної точки, яка має координати (0,0,0), тобто «центр камери» (так зване вхідне вічко; положення отвору стенопа), що знаходиться в O.
Для будь-якої іншої 3D-точки з , результат коректно визначений і має вигляд . Це відповідає нескінченно віддаленій точці на площині проєктованого зображення (навіть якщо площина зображення вибрана як евклідова площина, то не існує відповідної точки перетину).
Нормована матриця камери і координати нормованого зображення
Матриця камери, отримана вище, може бути спрощена ще більше, якщо ми припустимо, що f = 1:
де тут позначає одиничну матрицю . Зверніть увагу, що matrix тут розділена на конкатенацію матриці і тривимірного вектору. Матриця камери іноді називається канонічної формою.
До сіх пір всі точки в тривимірному світі були представлені в системі координат відцентрованої камери, тобто в системі координат, яка має початок в центрі камери (місце розташування точкового отвору стенопа). На практиці, однак, 3D-точки можуть бути представлені в термінах координат відносно довільної системи координат (X1',X2',X3'). Припускаючи, що координатні осі камери (X1,X2,X3) і осі (X1',X2',X3') мають Евклідів тип (ортогональний і ізотропний), існує єдине Евклідове тривимірне перетворення (поворот і зрушення) між двома системами координат. Іншими словами, камера не обов'язково знаходиться на початку координат і дивиться уздовж осі z.
Дві операції обертання і зсуву тривимірних координат можуть бути представлені у вигляді двох матриць
- and
де є матрицею повороту , а є тривимірним вектором паралельного перенесення. Коли перша матриця множиться на однорідне уявлення 3D-точки, результатом є однорідне уявлення поверненої точки, а друга матриця виконує замість цього паралельне перенесення. Виконання двох операцій послідовно, тобто спочатку поворот, а потім паралельне перенесення (з вектором паралельного перенесення, заданим у вже поверненій системі координат), дає комбіновану матрицю повороту і паралельного перенесення
Припускаючи, що і — це точно обертання та перенесення, які пов'язані з двома системами координат (X1,X2,X3) і (X1',X2',X3') вище, це означає, що
де — однорідне уявлення точки P в системі координат (X1',X2',X3').
Припускаючи також, що матриця камери задана , відображення з координат в (X1',X2',X3') до однорідних координатам зображення стає
Отже, матриця камери, яка пов'язує точки в системі координат (X1',X2',X3') з координатами зображення, є
конкатенація матриці 3D обертання і тривимірного вектора перенесення.
Цей тип матриці камери називають нормованою матрицею камери, вона приймає фокусну відстань = 1 і координати зображення вимірюються в системі координат, де початок координат знаходиться на перетині між віссю X3 і площиною зображення, і має ті ж одиниці як тривимірна система координат. Отримані координати зображення називаються координатами нормованого зображення.
Положення камери
Знову ж, описаний вище нульове простір нормованої матриці камери, описана вище , натягнуто на 4-мірний вектор
Це, знову ж, координати центру камери, тепер відносно системи (X1',X2',X3'). Це можна побачити, застосувавши спочатку поворот, а потім паралельний перенос до тривимірного вектору і результат є однорідним представленням тривимірних координат (0,0,0).
Це означає, що центр камери (в її однорідному поданні) знаходиться в нульовому просторі матриці камери, за умови, що він представлений у вигляді тривимірних координат відносно тієї ж системи координат, до якої відноситься матриця камери.
Нормовану матрицю камери можна тепер записати у вигляді
де — це тривимірні координати камери відносно системи (X1',X2',X3').
Загальна матриця камери
З огляду на відображення, створене нормованою матрицею камери, отримані координати нормованого зображення можуть бути перетворені за допомогою довільної двовимірної гомографіі. Це включає двовимірний перенос та обертання, а також масштабування (изотропне і анізотропне), але, також, і загальні двовимірні перспективні перетворення. Таке перетворення може бути представлено як матриця matrix , яка відображає координати нормованого зображення до координат перетвореного однорідного зображення :
Вставка вищенаведеного виразу для координат нормованого зображення у вигляді тривимірних координат дає
Це дає найбільш загальну форму матриці камери
Див. також
Посилання
- Richard Hartley and Andrew Zisserman (2003). Multiple View Geometry in computer vision. Cambridge University Press. ISBN .
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
U komp yuternomu zori matricya kameri abo matricya proyekciyi kameri ye matriceyu 3 4 displaystyle 3 times 4 yaka opisuye vidobrazhennya stenopa vid 3D tochok v sviti do 2D tochok zobrazhennya Nehaj x displaystyle mathbf x predstavlennya trivimirnoyi tochki v odnoridnih koordinatah chotirivimirnij vektor i nehaj y displaystyle mathbf y bude predstavlennyam zobrazhennya ciyeyi tochki v stenopi 3 vimirnij vektor Todi maye misce nastupne spivvidnoshennya y C x displaystyle mathbf y sim mathbf C mathbf x de C displaystyle mathbf C ce matricya kameri a displaystyle sim znak sho oznachaye sho liva i prava chastini rivnosti rivni nenulovomu skalyarnomu mnozhennyu Tak yak matricya kameri C displaystyle mathbf C bere uchast u vidobrazhenni mizh elementami dvoh proyektivnih prostoriv yiyi tezh mozhna rozglyadati yak proyektivnij element Ce oznachaye sho u neyi ye tilki 11 stupeniv svobodi tak yak bud yake mnozhennya na nenulovij skalyar prizvodit do ekvivalentnoyi matrici kameri PohodzhennyaVidobrazhennya koordinat trivimirnoyi tochki P na koordinati dvovimirnogo zobrazhennya proyekciyi tochki na ploshinu zobrazhennya vidpovidno do modeli stenopa dayetsya formuloyu y 1 y 2 f x 3 x 1 x 2 displaystyle begin pmatrix y 1 y 2 end pmatrix frac f x 3 begin pmatrix x 1 x 2 end pmatrix de x 1 x 2 x 3 displaystyle x 1 x 2 x 3 ye trivimirnimi koordinatami P shodo centralizovanoyi sistemi koordinat kameri y 1 y 2 displaystyle y 1 y 2 otrimani koordinati zobrazhennya f fokusna vidstan kameri dlya yakoyi peredbachayetsya sho f gt 0 Krim togo mi takozh pripuskayemo sho x3 gt 0 Dlya otrimannya matrici kameri cej viraz perepisuyetsya v terminah odnoridnih koordinat Zamist dvovimirnogo vektora y 1 y 2 displaystyle y 1 y 2 rozglyanemo proyektivnij element 3D vektor y y 1 y 2 1 displaystyle mathbf y y 1 y 2 1 ta zamist rivnosti rozglyadayemo rivnist z tochnistyu do masshtabuvannya na nenulove chislo sho poznachayetsya displaystyle sim Spochatku mi zapisuyemo koordinati odnoridnogo zobrazhennya u viglyadi viraziv v zvichajnih trivimirnih koordinatah y 1 y 2 1 f x 3 x 1 x 2 x 3 f x 1 x 2 x 3 f displaystyle begin pmatrix y 1 y 2 1 end pmatrix frac f x 3 begin pmatrix x 1 x 2 frac x 3 f end pmatrix sim begin pmatrix x 1 x 2 frac x 3 f end pmatrix Nareshti takozh trivimirni koordinati virazhayutsya v odnoridnomu predstavlenni x displaystyle mathbf x i os yak viglyadaye matricya kameri y 1 y 2 1 1 0 0 0 0 1 0 0 0 0 1 f 0 x 1 x 2 x 3 1 displaystyle begin pmatrix y 1 y 2 1 end pmatrix sim begin pmatrix 1 amp 0 amp 0 amp 0 0 amp 1 amp 0 amp 0 0 amp 0 amp frac 1 f amp 0 end pmatrix begin pmatrix x 1 x 2 x 3 1 end pmatrix chi y C x displaystyle mathbf y sim mathbf C mathbf x de C displaystyle mathbf C matricya kameri yaka dayetsya formuloyu C 1 0 0 0 0 1 0 0 0 0 1 f 0 displaystyle mathbf C begin pmatrix 1 amp 0 amp 0 amp 0 0 amp 1 amp 0 amp 0 0 amp 0 amp frac 1 f amp 0 end pmatrix i vidpovidna matricya kameri teper staye C 1 0 0 0 0 1 0 0 0 0 1 f 0 f 0 0 0 0 f 0 0 0 0 1 0 displaystyle mathbf C begin pmatrix 1 amp 0 amp 0 amp 0 0 amp 1 amp 0 amp 0 0 amp 0 amp frac 1 f amp 0 end pmatrix sim begin pmatrix f amp 0 amp 0 amp 0 0 amp f amp 0 amp 0 0 amp 0 amp 1 amp 0 end pmatrix Ostannij krok ye naslidkom togo sho C displaystyle mathbf C sam po sobi ye proyektivnim elementom Vivedena tut matricya kameri mozhe zdatisya trivialnoyu v tomu sensi sho vona mistit duzhe malo nenulovih elementiv Ce v znachnij miri zalezhit vid konkretnih sistem koordinat yaki buli obrani dlya 3D i 2D tochok Na praktici odnak inshi formi matric kamer ye zagalnimi sho bude pokazano nizhche Polozhennya kameriMatricya kameri C displaystyle mathbf C otrimana v poperednomu rozdili maye nulovij prostir natyagnute na vektor n 0 0 0 1 displaystyle mathbf n begin pmatrix 0 0 0 1 end pmatrix Ce takozh odnoridne uyavlennya trivimirnoyi tochki yaka maye koordinati 0 0 0 tobto centr kameri tak zvane vhidne vichko polozhennya otvoru stenopa sho znahoditsya v O Dlya bud yakoyi inshoyi 3D tochki z x 3 0 displaystyle x 3 0 rezultat y C x displaystyle mathbf y sim mathbf C mathbf x korektno viznachenij i maye viglyad y y 1 y 2 0 displaystyle mathbf y y 1 y 2 0 top Ce vidpovidaye neskinchenno viddalenij tochci na ploshini proyektovanogo zobrazhennya navit yaksho ploshina zobrazhennya vibrana yak evklidova ploshina to ne isnuye vidpovidnoyi tochki peretinu Normovana matricya kameri i koordinati normovanogo zobrazhennyaMatricya kameri otrimana vishe mozhe buti sproshena she bilshe yaksho mi pripustimo sho f 1 C 0 1 0 0 0 0 1 0 0 0 0 1 0 I 0 displaystyle mathbf C 0 begin pmatrix 1 amp 0 amp 0 amp 0 0 amp 1 amp 0 amp 0 0 amp 0 amp 1 amp 0 end pmatrix left begin array c c mathbf I amp mathbf 0 end array right de I displaystyle mathbf I tut poznachaye odinichnu matricyu 3 3 displaystyle 3 times 3 Zvernit uvagu sho 3 4 displaystyle 3 times 4 matrix C displaystyle mathbf C tut rozdilena na konkatenaciyu matrici 3 3 displaystyle 3 times 3 i trivimirnogo vektoru Matricya kameri C 0 displaystyle mathbf C 0 inodi nazivayetsya kanonichnoyi formoyu Do sih pir vsi tochki v trivimirnomu sviti buli predstavleni v sistemi koordinat vidcentrovanoyi kameri tobto v sistemi koordinat yaka maye pochatok v centri kameri misce roztashuvannya tochkovogo otvoru stenopa Na praktici odnak 3D tochki mozhut buti predstavleni v terminah koordinat vidnosno dovilnoyi sistemi koordinat X1 X2 X3 Pripuskayuchi sho koordinatni osi kameri X1 X2 X3 i osi X1 X2 X3 mayut Evklidiv tip ortogonalnij i izotropnij isnuye yedine Evklidove trivimirne peretvorennya povorot i zrushennya mizh dvoma sistemami koordinat Inshimi slovami kamera ne obov yazkovo znahoditsya na pochatku koordinat i divitsya uzdovzh osi z Dvi operaciyi obertannya i zsuvu trivimirnih koordinat mozhut buti predstavleni u viglyadi dvoh matric 4 4 displaystyle 4 times 4 R 0 0 1 displaystyle left begin array c c mathbf R amp mathbf 0 hline mathbf 0 amp 1 end array right and I t 0 1 displaystyle left begin array c c mathbf I amp mathbf t hline mathbf 0 amp 1 end array right de R displaystyle mathbf R ye matriceyu povorotu 3 3 displaystyle 3 times 3 a t displaystyle mathbf t ye trivimirnim vektorom paralelnogo perenesennya Koli persha matricya mnozhitsya na odnoridne uyavlennya 3D tochki rezultatom ye odnoridne uyavlennya povernenoyi tochki a druga matricya vikonuye zamist cogo paralelne perenesennya Vikonannya dvoh operacij poslidovno tobto spochatku povorot a potim paralelne perenesennya z vektorom paralelnogo perenesennya zadanim u vzhe povernenij sistemi koordinat daye kombinovanu matricyu povorotu i paralelnogo perenesennya R t 0 1 displaystyle left begin array c c mathbf R amp mathbf t hline mathbf 0 amp 1 end array right Pripuskayuchi sho R displaystyle mathbf R i t displaystyle mathbf t ce tochno obertannya ta perenesennya yaki pov yazani z dvoma sistemami koordinat X1 X2 X3 i X1 X2 X3 vishe ce oznachaye sho x R t 0 1 x displaystyle mathbf x left begin array c c mathbf R amp mathbf t hline mathbf 0 amp 1 end array right mathbf x de x displaystyle mathbf x odnoridne uyavlennya tochki P v sistemi koordinat X1 X2 X3 Pripuskayuchi takozh sho matricya kameri zadana C 0 displaystyle mathbf C 0 vidobrazhennya z koordinat v X1 X2 X3 do odnoridnih koordinatam zobrazhennya staye y C 0 x I 0 R t 0 1 x R t x displaystyle mathbf y sim mathbf C 0 mathbf x left begin array c c mathbf I amp mathbf 0 end array right left begin array c c mathbf R amp mathbf t hline mathbf 0 amp 1 end array right mathbf x left begin array c c mathbf R amp mathbf t end array right mathbf x Otzhe matricya kameri yaka pov yazuye tochki v sistemi koordinat X1 X2 X3 z koordinatami zobrazhennya ye C N R t displaystyle mathbf C N left begin array c c mathbf R amp mathbf t end array right konkatenaciya matrici 3D obertannya i trivimirnogo vektora perenesennya Cej tip matrici kameri nazivayut normovanoyu matriceyu kameri vona prijmaye fokusnu vidstan 1 i koordinati zobrazhennya vimiryuyutsya v sistemi koordinat de pochatok koordinat znahoditsya na peretini mizh vissyu X3 i ploshinoyu zobrazhennya i maye ti zh odinici yak trivimirna sistema koordinat Otrimani koordinati zobrazhennya nazivayutsya koordinatami normovanogo zobrazhennya Polozhennya kameri Znovu zh opisanij vishe nulove prostir normovanoyi matrici kameri opisana vishe C N displaystyle mathbf C N natyagnuto na 4 mirnij vektor n R 1 t 1 n 1 displaystyle mathbf n begin pmatrix mathbf R 1 mathbf t 1 end pmatrix begin pmatrix tilde mathbf n 1 end pmatrix Ce znovu zh koordinati centru kameri teper vidnosno sistemi X1 X2 X3 Ce mozhna pobachiti zastosuvavshi spochatku povorot a potim paralelnij perenos do trivimirnogo vektoru n displaystyle tilde mathbf n i rezultat ye odnoridnim predstavlennyam trivimirnih koordinat 0 0 0 Ce oznachaye sho centr kameri v yiyi odnoridnomu podanni znahoditsya v nulovomu prostori matrici kameri za umovi sho vin predstavlenij u viglyadi trivimirnih koordinat vidnosno tiyeyi zh sistemi koordinat do yakoyi vidnositsya matricya kameri Normovanu matricyu kameri C N displaystyle mathbf C N mozhna teper zapisati u viglyadi C N R I R 1 t R I n displaystyle mathbf C N mathbf R left begin array c c mathbf I amp mathbf R 1 mathbf t end array right mathbf R left begin array c c mathbf I amp tilde mathbf n end array right de n displaystyle tilde mathbf n ce trivimirni koordinati kameri vidnosno sistemi X1 X2 X3 Zagalna matricya kameriZ oglyadu na vidobrazhennya stvorene normovanoyu matriceyu kameri otrimani koordinati normovanogo zobrazhennya mozhut buti peretvoreni za dopomogoyu dovilnoyi dvovimirnoyi gomografii Ce vklyuchaye dvovimirnij perenos ta obertannya a takozh masshtabuvannya izotropne i anizotropne ale takozh i zagalni dvovimirni perspektivni peretvorennya Take peretvorennya mozhe buti predstavleno yak matricya 3 3 displaystyle 3 times 3 matrix H displaystyle mathbf H yaka vidobrazhaye koordinati normovanogo zobrazhennya y displaystyle mathbf y do koordinat peretvorenogo odnoridnogo zobrazhennya y displaystyle mathbf y y H y displaystyle mathbf y mathbf H mathbf y Vstavka vishenavedenogo virazu dlya koordinat normovanogo zobrazhennya u viglyadi trivimirnih koordinat daye y H C N x displaystyle mathbf y mathbf H mathbf C N mathbf x Ce daye najbilsh zagalnu formu matrici kameri C H C N H R t displaystyle mathbf C mathbf H mathbf C N mathbf H left begin array c c mathbf R amp mathbf t end array right Div takozh3D proyekciya Fundamentalna matricya Ob yemna vidbudovaPosilannyaRichard Hartley and Andrew Zisserman 2003 Multiple View Geometry in computer vision Cambridge University Press ISBN 0 521 54051 8