Жорсткий ротатор — механічна модель, що використовується при описі тіл, що обертаються. Довільний жорсткий ротатор є тривимірним жорстким тілом. Прикладом може бути дзиґа. Задання орієнтації такого тіла в просторі вимагає використання кутів Ейлера. Особливим жорстким ротатором є лінійний ротатор, для опису якого потрібно тільки два кути. Прикладом може бути лінійна молекула. Загалом молекули, наприклад, молекула води (асиметричний ротатор), аміаку (симетричний ротатор) чи метану (сферичний ротатор), є тривимірними.
Абстракція жорсткого ротатора використовується в молекулярній та ядерній фізиці для моделювання обертання молекул та ядер атома, тоді коли в якомусь наближенні деформацією можна знехтувати.
Лінійний ротатор
Модель лінійного ротатора складається з двох матеріальних точок, розділених фіксованою відстанню. Ця відстань та маси точок є єдиними параметрами моделі. Однак для багатьох двоатомних молекул така модель накладає занадто великі обмеження, оскільки відстані між атомами не зовсім фіксовані. Врахування малих видовжень при моделюванні дозволяє компенсувати цей недолік. Усе ж навіть для таких молекул модель жорсткого ротатора є корисним вихідним пунктом (моделлю першого порядку).
Класичний лінійний ротатор
Класичний лінійний ротатор складається з двох матеріальних точок із масами та (зведена маса ) на відстані одна від одної. Ротатор жорсткий, якщо не залежить від часу. Кінематика лінійного жорсткого ротатора зазвичай описується в сферичній системі координат. Кути задають орієнтацію ротатора в просторі. Кінетична енергія лінійного ротатора
де та - множники Ламе.
Множники Ламе входять у вираз для лапласіана. У разі сталої відстані
Класична функція Гамільтона лінійного жорсткого ротатора має вигляд
Квантовомеханічний лінійний ротатор
Модель жорсткого лінійного ротатора можна також використати в квантовій механіці для опису обертання двоатомних молекул. Енергія обертання залежить від моменту інерції системи . У системі відліку центру мас момент інерції дорівнює
Квантовані рівні енергії системи знаходяться з розв'язку рівняння Шредінгера
де — хвильова функція, а — гамільтоніан. Для жорсткого ротататора у вільному просторі, гамільтоніан відповідає кінетичній енергії системи:
де — зведена стала Планка, а — лапласіан. Якщо оператор Лапласа записати у сферичній системі координат, гамільтоніан задається формулою:
Аналогічний оператор фігурує також у рівнянні Шредінгера для атома водню після розділення змінних. Його власні значення та власні функції:
позначає сферичні гармоніки. Енергія не залежить від квантового числа . Рівні енергії
разів вироджені: функції з фіксованим , в яких , мають однакову енергію.
Запроваджуючи сталу обертання B, можна записати:
В одиницях оберненої довжини стала обертання дорівнює
де c - швидкість світла. Якщо використати значення h, c, and I в гаусових одиницях, записується в обернених сантиметрах, см−1. Ця одиниця часто використовується у ротаційно-вібраційній спектроскопії. Стала обертання залежить від відстані . Часто записують , де рівноважне значення (значення, при якому енергія взаємодії між атомами мінімальна).
Типовий ротаційний спектр складається із серій піків, що відповідають переходам між рівнями з різними значеннями квантового числа кутового моменту (). Відповідно, обертальні піки мають енергію, що відповідає цілому числу .
Правила відбору
Обертальні переходи в молекулі відбуваються, коли молекула поглинає фотон (квант електромагнітного поля). Залежно від енергії фотона, тобто від довжини хвилі, це може призвести до переходу між обертальними рівнями або викликати інші переходи в молекулі (електронні чи коливальні). Чисто обертальні переходи, в яких вібронні (коливально-електронні) хвильові функції не змінюються, відбуваються у мікрохвильовому діапазоні електромагнітного спектру.
Зазвичай обертальні переходи можуть спостерігатися лише тоді, коли квантове число кутового моменту змінюється на одиницю (). Це правило відбору є наслідком наближення теорії збурень першого порядку в залежному від часу рівнянні Шредінгера. У рамках цього підходу обертальні переходи можна спостерігати лише тоді, коли одна чи кілька складових дипольного моменту ненульова. Якщо z - напрямок складової електричного поля електромагнітної хвилі, дипольний момент переходу дорівнює
Перехід відбувається, коли цей інтеграл не дорівнює нулю. Відділяючи у хвильовій функції обертальну складову від вібронної, можна показати, що це означає наявність у молекули постійного дипольного моменту. Проінтегрувавши по вібронним координатам, залишається обертальна частина моменту переходу
Тут - z-ва компонента постійного дипольного моменту. Момент є усередниним по вібронних координатах дипольним оператором. Залишається тільки компонента постійного моменту вздовж осі різноатомних молекул. Використовуючи, ортогональність сферичних гармонік можна визначити значення , , , та , що даватимуть ненульові значення моменту переходу. Це обмеження визначає правила відбору для жорсткого ротатора
Нежорсткий лінійний ротатор
Зазвичай для опису обертальної енергії двоатомних молекул використовують модель жорсткого ротатора, але вона не є абсолютно точним описом таких молекул. Це зумовлено тим, що молекулярний зв'язок, а з ним і міжатомна відстань не є точно фіксованими. При швидшому обертанні (більших значеннях квантового числа ) зв'язок розтягається. Врахувати цей ефект за рахунок множника, відомого як стала відцентрового спотворення (риска над змінною означає, що її величина виражається у см−1):
де
є фундаментальною частотою коливань молекули (в см−1). Ця частота зв'язана зі зведеною масою та коефіцієнтом жорсткості зв'язку за формулою
Попри те, що модель нежорсткого ротататора задовільна для двоатомної молекули, вона все ж недосконала. Причина в тому, що вона не враховує розтягання зв'язку за рахунок енергії у ньому (ангармонічність потенціалу).
Жорсткий ротатор довільної форми
Жорсткий ротатор довільної форми є абсолютно твердим тілом з фіксованим центром маси (він може також рівномірно рухатися) у вільному від полів просторі R3, тож його енергія скаладається з кінетичної (при рівномірному русі є також стала складова, яку можна не враховувати). Жорстке тіло можна характеризувати трьома власними значеннями тензора моменту інерції, що є невід'ємними числами, які називають головними моментами інерції. У мікрохвильовій спектроскопії, яка в основному вивчає обертальні переходи, зазвичай молекули класифікують так:
- сферичні ротатори
- симетричні ротатори
- сплюснуті симетричні ротатори
- витягнуті симетричні ротатори
- асиметричні ротатори
Ця класифікація залежить від віденосних значень головних моментів інерції.
Координати
Різні підрозділи фізики та області техніки використовують різні засоби для опису кінематики жорсткого ротатора. Молекулярна фізика майже винятково користується кутами Ейлера. У квантовій механіці використання кутів Ейлера теж має переваги, оскільки вони є простим узагальненням сферичної системи координат.
Першим кроком є уявне закріплення на тілі ортогональної системи координат. Цю систему координат можна закріпити на тілі будь-як, але здебільшого для цього використовують систему, а якій тензор інерції діагональний, тобто осі кооридинат збігаються з гловними осями тензора інерції. Така система завжди ортогональна, оскільки тензор інерції задається Ермітовою матрицею. Коли ротатор має вісь симетрії, вона зазвичай збігається з одною із головних осей. Зручно обрати вісь симетрії найвищого порядку за вісь z.
У початковий момент часу лабораторну систему суміщають із закріпленою на тілі, тож осі x, y та z закріпленої системи збігаються з осями X, Y та Z просторової лабораторної системи. Потім тіло повертають на певний додатній кут навколо осі z (проти годинникової стрілки), що змусить вісь зміститися в положення . Третім кроком, тіло та закріплену на ньому систему координат повертають на кут навколо осі . Вісь z закріпленої на тілі системи після цих двох поворотів матиме стосовно непорушної просторової системи полярний кут (зазвичай його позначають ) та азимутальний кут (зазвичай його позначають ). Якщо ротатор циліндричний вздовж осі z, на кшталт лінійного жорсткого ротатора, його положення в просторі є однозначно визначеним.
Якщо циліндричної симетрії нема, то останній поворот проводиться навколо осі z-axis (з кутовими координатами та ), що необхідно для повного визначення орієнтації тіла. Традиційно останній кут повороту називають (або ).
Така конвенція визначення кутів Ейлера відома як конвенція ; можна показати, що вона аналогічна конвенції , у якій порядок поворотів обернений.
Повна матриця трьох послідовних поворотів є добутком
Нехай є радіус-вектором довільної точки тіла в закріпленій на тілі системі відліку. Початково є також радіус-вектром точки в просторовій системі координат. Повороти тіла не змінюють координати в системі, закріпленій на тілі, але змінюють просторові координати, тож вектор стає
Зокрема, якщо точка лежить спочатку на осі Z, її координати стають
що демонструє відповідність сферичній системі координат (у конвенції, що використовується в фізиці).
Знання кутів Ейлера як функції часу t та початкових координат визначає кінематику обертання абсолютно твердого тіла.
Класична кінетична енергія
Це є узагальненням добре відомого виразу для енергії обертання тіла навколо одної осі.
Тут припускається, що закріплена на тілі система координат є системою головних осей; вона діагоналізує миттєве значення тензора моменту інерції , тобто
- де
Кути Ейлера вважаються тут залежними від часу, що в свою чергу визначає залежність від часу . Це позначення означає, що при кути Ейлера нульові, тобто при закріплена на тілі система відліку збігається з просторовою.
Класична кінетична енергія T жорсткого ротатора може бути записана по різному:
- як фунція кутових швидкостей
- у лагранжевій формі
- як функція кутового моменту
- у гамільтоновій формі
Оскільки кожна з цих форм використовується і записана в підручниках, тут буде наведено усі.
Через кутові швидкості
T, виражена через кутові швидкості, має вигляд
де
Вектор складений із компонент кутових швидкостей ротатора, щодо осей, закріплених на тілі. Можна показати, що не є похідною будь-якого вектора, на відміну від звичного означння швидкості. Крапки над ейлеровими кутами означають часові похідні в нотації Ньютона. Кутові швидкості задовольняють систему рівнянь, відому під назвою ейлерових (із нульовим моментом сили, оскільки вважається, що ротатор обертається у просторі, вільному від сил).
Форма Лагранжа
Якщо знову підставити вираз для у T, можна отримати кінетичну енергію в формі функції Лагранжа (як функцію похідних від ейлерових кутів). У матричному запису
де - метричний тензор, виражений через ейлерові кути (в криволінійних координатах);
Через кутовий момент
Доволі часто кінетичну енергію записують через кутовий момент . В обертовій системі відліку він має компоненти . Можна показати, що він зв'язаний з кутовою швидкістю,
- або
У просторовій фіксованій системі його значення зберігається, тобто не залежить від часу. У закріпленій на тілі системі відліку компоненти кутового моменту залежать від часу.
Вираз для кінетичної енергії через кутовий момент має вигляд
Гамільтонова форма
У гамільтоновій формі кінетична енергія записується через узагальнені імпульси, що визначаються як
де використано симетричність матриці .
Сам вираз для кінетичної енергії має вигляд
де обернений метричний тензор задається як
Цей обернений тензор потрібен для отримання оператора Лапласа — Бельтрамі, який (помножений на ) задає оператор енергії жорсткого ротатора в квантовій механіці.
Наведену класичну функцію Гамільтона можна переписати у вигляді, необхідному для інтегрування у фазовому просторі класичної статистичної механіки
Жорсткий ротатор у квантовій механіці
Як зазвичай перехід до квантової механіки здійснюється заміною узагальнених імпульсів на оператори, в яких фігурують похідні щодо канонічно спряжених узагальнених координат. Так,
і аналогічно щодо та . На диво, це правило зводить доволі складну функцію кутів Ейлера, їхніх похідних та моментів інерції до простого диференціального оператора, який не залежить від часу чи від моментів інерції, і в якому фігурує похідна тільки від одного з кутів Ейлера.
Цього правила квантування достатньо, щоб отримати оператори, що відповідають класичним кутовим моментам. Існує два види кутових моментів: ті, що визначаються у фіксованій просторовій системі відліку, та ті, що зв'язані з тілом. Як і ті, так і іншу є векторними операторами, тобто мають три складові, що перетворюються при обертанні (фіксованої проторової системи та системи, зв'язаної з тілом, відповідно) як вектори. Точна форма кутових моментів жорсткого ротататора задається D-матрицею Вігнера (яку, втім, слід помножити на ). У системі тіла оператори кутового моменту записуються як . Вони мають незвичні комутаційні співвідношення.
Правила квантування не вистачає, щоб записати оператор кінетичної енергії, виходячи з класичного гамільтоніана. Оскільки в класичній фізиці комутує з та й оберненими до них функціями, положення цих тригонометричних фунцій у класичній функції Гамільтона довільне. Після квантування комутації уже більше нема, і порядок операторів та функцій в гамільтоніані важко визначити. Подольський у 1928 запропонував використовувати оператор Лапласа — Бельтрамі (помножений на ), що має відповідну форму для того, щоб грати роль квантомеханічного оператора енергії. Форма цього оператора така (використовується конвенція підсумовування: повторення індексів означає суму— у цьому випадку це стосується трьох кутів Ейлера ):
де позначає детермінант тензора g:
Отримавши обернений метричний тензор, можна записати оператор кінетичної енергії через ейлерові кути за допомогою простої підстановки (зауваження: відповідне рівняння на власні значення є рівнянням Шредінгера для жорсткого ротатора у формі, для якої було вперше знайдено розв'язок Кронігом та Рабі (для випадку симетричного ротатора). Це один із небагатьох випадків, коли рівняння Шредінгера можна розв'язати аналітично. Усі розв'язки було знайдено упродовж року після формулювання рівняння Шредінгера.)
Зараз зазвичай поступають так: можна показати, що виражається в обертовій системіі відліку через оператори кутового моменту (при доведенні потрібно бути обережним щодо комутації диференційних операторів та тригонометричних функцій). Результат виглядає аналогічно класичному:
Дія операторів на D-матриці Вігнера проста. Зокрема
тож рівняння Шредінгера для сферичного ротора () розв'язується, визначаєть вироджені рівні енергії .
Симетричний ротатор має . Він вигягнутий (як сигара), якщо . У цьому випадку гамільтоніан записується
і використовується
Отже,
- , де
Власне значення вироджено разів, усі власні функції з мають однакове власне значення. Енергії з |k| > 0 вироджені разів. Цей точний розв'язок рівняння Шредінгера для симетричного ротатора було знайдено в 1927.
Задача про обертання несиметричного ротатора () точно не розв'язується.
Пряме експериментальне спостереження обертань молекул
Обертання молекули впродовж довгого часу безпосередньо спостерігати не вдавалося. Тільки розробка технології вимірювання з атомною роздільністю зробила його можливим. При низьких температурах обертання молекул можна заморозити, повністю або частково. Тоді його можна бачити в тунельних мікроскопах, стабілізацію при вищих температурах можна пояснити обертальною ентропією.
Пряме спостереження збудження обертання у виокремленій одиночній молекулі вдалося побачити нещодавно, використовуючи спектроскопію непружного тунелювання електронів у тунельному мікроскопі.
Виноски
- Давыдов А.С. (1973). Квантовая механика. Москва: Наука.
- Podolsky, B. (1928). Phys. Rev. 32: 812. Bibcode:1928PhRv...32..812P. doi:10.1103/PhysRev.32.812.
{{}}
: Пропущений або порожній|title=
() - Chapter 4.9 of Goldstein, H.; Poole, C. P.; Safko, J. L. (2001). Classical Mechanics (Third ed.). San Francisco: Addison Wesley Publishing Company. .
- R. de L. Kronig and I. I. Rabi (1927). The Symmetrical Top in the Undulatory Mechanics. Phys. Rev. 29: 262—269. Bibcode:1927PhRv...29..262K. doi:10.1103/PhysRev.29.262.
- J. K. Gimzewski; C. Joachim; R. R. Schlittler; V. Langlais; H. Tang; I. Johannsen (1998), «Rotation of a Single Molecule Within a Supramolecular Bearing» (German), Science 281 (5376): pp. 531–533, doi:10.1126/science.281.5376.531
- Thomas Waldmann; Jens Klein; Harry E. Hoster; R. Jürgen Behm (2012), «Stabilization of Large Adsorbates by Rotational Entropy: A Time-Resolved Variable-Temperature STM Study» (German), ChemPhysChem: pp. n/a–n/a, doi:10.1002/cphc.201200531
- S. Li, A. Yu, A, F. Toledo, Z. Han, H. Wang, H. Y. He, R. Wu, and W. Ho, Phys. Rev. Lett. 111, 146102 (2013).http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.146102
- F. D. Natterer, F. Patthey, and H. Brune, Phys. Rev. Lett. 111, 175303 (2013).http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.175303
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Zhorstkij rotator mehanichna model sho vikoristovuyetsya pri opisi til sho obertayutsya Dovilnij zhorstkij rotator ye trivimirnim zhorstkim tilom Prikladom mozhe buti dziga Zadannya oriyentaciyi takogo tila v prostori vimagaye vikoristannya kutiv Ejlera Osoblivim zhorstkim rotatorom ye linijnij rotator dlya opisu yakogo potribno tilki dva kuti Prikladom mozhe buti linijna molekula Zagalom molekuli napriklad molekula vodi asimetrichnij rotator amiaku simetrichnij rotator chi metanu sferichnij rotator ye trivimirnimi Abstrakciya zhorstkogo rotatora vikoristovuyetsya v molekulyarnij ta yadernij fizici dlya modelyuvannya obertannya molekul ta yader atoma todi koli v yakomus nablizhenni deformaciyeyu mozhna znehtuvati Linijnij rotatorModel linijnogo rotatora skladayetsya z dvoh materialnih tochok rozdilenih fiksovanoyu vidstannyu Cya vidstan ta masi tochok ye yedinimi parametrami modeli Odnak dlya bagatoh dvoatomnih molekul taka model nakladaye zanadto veliki obmezhennya oskilki vidstani mizh atomami ne zovsim fiksovani Vrahuvannya malih vidovzhen pri modelyuvanni dozvolyaye kompensuvati cej nedolik Use zh navit dlya takih molekul model zhorstkogo rotatora ye korisnim vihidnim punktom modellyu pershogo poryadku Klasichnij linijnij rotator Klasichnij linijnij rotator skladayetsya z dvoh materialnih tochok iz masami m 1 displaystyle m 1 ta m 2 displaystyle m 2 zvedena masa m m 1 m 2 m 1 m 2 displaystyle mu frac m 1 m 2 m 1 m 2 na vidstani R displaystyle R odna vid odnoyi Rotator zhorstkij yaksho R displaystyle R ne zalezhit vid chasu Kinematika linijnogo zhorstkogo rotatora zazvichaj opisuyetsya v sferichnij sistemi koordinat Kuti zadayut oriyentaciyu rotatora v prostori Kinetichna energiya T displaystyle T linijnogo rotatora 2 T m R 2 8 2 f sin 8 2 m R 2 8 f 1 0 0 sin 2 8 8 f m 8 f h 8 2 0 0 h f 2 8 f displaystyle 2T mu R 2 big dot theta 2 dot varphi sin theta 2 big mu R 2 big dot theta dot varphi Big begin pmatrix 1 amp 0 0 amp sin 2 theta end pmatrix begin pmatrix dot theta dot varphi end pmatrix mu Big dot theta dot varphi Big begin pmatrix h theta 2 amp 0 0 amp h varphi 2 end pmatrix begin pmatrix dot theta dot varphi end pmatrix de h 8 R displaystyle h theta R ta h f R sin 8 displaystyle h varphi R sin theta mnozhniki Lame Mnozhniki Lame vhodyat u viraz dlya laplasiana U razi staloyi vidstani R displaystyle R 2 1 h 8 h f 8 h f h 8 8 f h 8 h f f 1 R 2 1 sin 8 8 sin 8 8 1 sin 2 8 2 f 2 displaystyle nabla 2 frac 1 h theta h varphi left frac partial partial theta frac h varphi h theta frac partial partial theta frac partial partial varphi frac h theta h varphi frac partial partial varphi right frac 1 R 2 left frac 1 sin theta frac partial partial theta sin theta frac partial partial theta frac 1 sin 2 theta frac partial 2 partial varphi 2 right Klasichna funkciya Gamiltona linijnogo zhorstkogo rotatora maye viglyad H 1 2 m R 2 p 8 2 p f 2 sin 2 8 displaystyle H frac 1 2 mu R 2 left p theta 2 frac p varphi 2 sin 2 theta right Kvantovomehanichnij linijnij rotator Model zhorstkogo linijnogo rotatora mozhna takozh vikoristati v kvantovij mehanici dlya opisu obertannya dvoatomnih molekul Energiya obertannya zalezhit vid momentu inerciyi sistemi I displaystyle I U sistemi vidliku centru mas moment inerciyi dorivnyuye I m R 2 displaystyle I mu R 2 Kvantovani rivni energiyi sistemi znahodyatsya z rozv yazku rivnyannya Shredingera H PS E PS displaystyle hat H Psi E Psi de PS displaystyle Psi hvilova funkciya a H displaystyle hat H gamiltonian Dlya zhorstkogo rotatatora u vilnomu prostori gamiltonian vidpovidaye kinetichnij energiyi sistemi H ℏ 2 2 m 2 displaystyle hat H frac hbar 2 2 mu nabla 2 de ℏ displaystyle hbar zvedena stala Planka a 2 displaystyle nabla 2 laplasian Yaksho operator Laplasa zapisati u sferichnij sistemi koordinat gamiltonian zadayetsya formuloyu H ℏ 2 2 I 1 sin 8 8 sin 8 8 1 sin 2 8 2 f 2 displaystyle hat H frac hbar 2 2I left 1 over sin theta partial over partial theta left sin theta partial over partial theta right 1 over sin 2 theta partial 2 over partial varphi 2 right Analogichnij operator figuruye takozh u rivnyanni Shredingera dlya atoma vodnyu pislya rozdilennya zminnih Jogo vlasni znachennya ta vlasni funkciyi H Y ℓ m 8 f ℏ 2 2 I ℓ ℓ 1 Y ℓ m 8 f displaystyle hat H Y ell m theta varphi frac hbar 2 2I ell ell 1 Y ell m theta varphi Y ℓ m 8 f displaystyle Y ell m theta varphi poznachaye sferichni garmoniki Energiya ne zalezhit vid kvantovogo chisla m displaystyle m Rivni energiyi E ℓ ℏ 2 2 I ℓ ℓ 1 displaystyle E ell hbar 2 over 2I ell left ell 1 right 2 ℓ 1 displaystyle 2 ell 1 raziv virodzheni funkciyi z fiksovanim ℓ displaystyle ell v yakih m ℓ ℓ 1 ℓ displaystyle m ell ell 1 dots ell mayut odnakovu energiyu Zaprovadzhuyuchi stalu obertannya B mozhna zapisati E ℓ B ℓ ℓ 1 B ℏ 2 2 I displaystyle E ell B ell left ell 1 right quad quad B equiv frac hbar 2 2I V odinicyah obernenoyi dovzhini stala obertannya dorivnyuye B B h c h 8 p 2 c I ℏ 4 p c m R e 2 displaystyle bar B equiv frac B hc frac h 8 pi 2 cI frac hbar 4 pi c mu R e 2 de c shvidkist svitla Yaksho vikoristati znachennya h c and I v gausovih odinicyah B displaystyle bar B zapisuyetsya v obernenih santimetrah sm 1 Cya odinicya chasto vikoristovuyetsya u rotacijno vibracijnij spektroskopiyi Stala obertannya B R displaystyle bar B R zalezhit vid vidstani R displaystyle R Chasto zapisuyut B e B R e displaystyle B e bar B R e de R e displaystyle R e rivnovazhne znachennya R displaystyle R znachennya pri yakomu energiya vzayemodiyi mizh atomami minimalna Tipovij rotacijnij spektr skladayetsya iz serij pikiv sho vidpovidayut perehodam mizh rivnyami z riznimi znachennyami kvantovogo chisla kutovogo momentu ℓ displaystyle ell Vidpovidno obertalni piki mayut energiyu sho vidpovidaye cilomu chislu 2 B displaystyle 2 bar B Pravila vidboru Obertalni perehodi v molekuli vidbuvayutsya koli molekula poglinaye foton kvant elektromagnitnogo polya Zalezhno vid energiyi fotona tobto vid dovzhini hvili ce mozhe prizvesti do perehodu mizh obertalnimi rivnyami abo viklikati inshi perehodi v molekuli elektronni chi kolivalni Chisto obertalni perehodi v yakih vibronni kolivalno elektronni hvilovi funkciyi ne zminyuyutsya vidbuvayutsya u mikrohvilovomu diapazoni elektromagnitnogo spektru Zazvichaj obertalni perehodi mozhut sposterigatisya lishe todi koli kvantove chislo kutovogo momentu zminyuyetsya na odinicyu D l 1 displaystyle Delta l pm 1 Ce pravilo vidboru ye naslidkom nablizhennya teoriyi zburen pershogo poryadku v zalezhnomu vid chasu rivnyanni Shredingera U ramkah cogo pidhodu obertalni perehodi mozhna sposterigati lishe todi koli odna chi kilka skladovih dipolnogo momentu nenulova Yaksho z napryamok skladovoyi elektrichnogo polya elektromagnitnoyi hvili dipolnij moment perehodu dorivnyuye ps 2 m z ps 1 m z 21 ps 2 m z ps 1 d t displaystyle langle psi 2 mu z psi 1 rangle left mu z right 21 int psi 2 mu z psi 1 mathrm d tau Perehid vidbuvayetsya koli cej integral ne dorivnyuye nulyu Viddilyayuchi u hvilovij funkciyi obertalnu skladovu vid vibronnoyi mozhna pokazati sho ce oznachaye nayavnist u molekuli postijnogo dipolnogo momentu Prointegruvavshi po vibronnim koordinatam zalishayetsya obertalna chastina momentu perehodu m z l m l m m 0 2 p d ϕ 0 p Y l m 8 ϕ cos 8 Y l m 8 ϕ d cos 8 displaystyle left mu z right l m l m mu int 0 2 pi mathrm d phi int 0 pi Y l m left theta phi right cos theta Y l m left theta phi right mathrm d cos theta Tut m cos 8 displaystyle mu cos theta z va komponenta postijnogo dipolnogo momentu Moment m displaystyle mu ye useredninim po vibronnih koordinatah dipolnim operatorom Zalishayetsya tilki komponenta postijnogo momentu vzdovzh osi riznoatomnih molekul Vikoristovuyuchi ortogonalnist sferichnih garmonik Y l m 8 ϕ displaystyle Y l m left theta phi right mozhna viznachiti znachennya l displaystyle l m displaystyle m l displaystyle l ta m displaystyle m sho davatimut nenulovi znachennya momentu perehodu Ce obmezhennya viznachaye pravila vidboru dlya zhorstkogo rotatora D m 0 D l 1 displaystyle Delta m 0 quad quad Delta l pm 1 Nezhorstkij linijnij rotator Zazvichaj dlya opisu obertalnoyi energiyi dvoatomnih molekul vikoristovuyut model zhorstkogo rotatora ale vona ne ye absolyutno tochnim opisom takih molekul Ce zumovleno tim sho molekulyarnij zv yazok a z nim i mizhatomna vidstan R displaystyle R ne ye tochno fiksovanimi Pri shvidshomu obertanni bilshih znachennyah kvantovogo chisla l displaystyle l zv yazok roztyagayetsya Vrahuvati cej efekt za rahunok mnozhnika vidomogo yak stala vidcentrovogo spotvorennya D displaystyle bar D riska nad zminnoyu oznachaye sho yiyi velichina virazhayetsya u sm 1 E l E l h c B l l 1 D l 2 l 1 2 displaystyle bar E l E l over hc bar B l left l 1 right bar D l 2 left l 1 right 2 de D 4 B 3 w 2 displaystyle bar D 4 bar B 3 over bar boldsymbol omega 2 w displaystyle bar boldsymbol omega ye fundamentalnoyu chastotoyu kolivan molekuli v sm 1 Cya chastota zv yazana zi zvedenoyu masoyu ta koeficiyentom zhorstkosti zv yazku za formuloyu w 1 2 p c k m displaystyle bar boldsymbol omega 1 over 2 pi c sqrt k over mu Popri te sho model nezhorstkogo rotatatora zadovilna dlya dvoatomnoyi molekuli vona vse zh nedoskonala Prichina v tomu sho vona ne vrahovuye roztyagannya zv yazku za rahunok energiyi u nomu angarmonichnist potencialu Zhorstkij rotator dovilnoyi formiZhorstkij rotator dovilnoyi formi ye absolyutno tverdim tilom z fiksovanim centrom masi vin mozhe takozh rivnomirno ruhatisya u vilnomu vid poliv prostori R3 tozh jogo energiya skaladayetsya z kinetichnoyi pri rivnomirnomu rusi ye takozh stala skladova yaku mozhna ne vrahovuvati Zhorstke tilo mozhna harakterizuvati troma vlasnimi znachennyami tenzora momentu inerciyi sho ye nevid yemnimi chislami yaki nazivayut golovnimi momentami inerciyi U mikrohvilovij spektroskopiyi yaka v osnovnomu vivchaye obertalni perehodi zazvichaj molekuli klasifikuyut tak sferichni rotatori simetrichni rotatori splyusnuti simetrichni rotatori vityagnuti simetrichni rotatori asimetrichni rotatori Cya klasifikaciya zalezhit vid videnosnih znachen golovnih momentiv inerciyi Koordinati Rizni pidrozdili fiziki ta oblasti tehniki vikoristovuyut rizni zasobi dlya opisu kinematiki zhorstkogo rotatora Molekulyarna fizika majzhe vinyatkovo koristuyetsya kutami Ejlera U kvantovij mehanici vikoristannya kutiv Ejlera tezh maye perevagi oskilki voni ye prostim uzagalnennyam sferichnoyi sistemi koordinat Pershim krokom ye uyavne zakriplennya na tili ortogonalnoyi sistemi koordinat Cyu sistemu koordinat mozhna zakripiti na tili bud yak ale zdebilshogo dlya cogo vikoristovuyut sistemu a yakij tenzor inerciyi diagonalnij tobto osi kooridinat zbigayutsya z glovnimi osyami tenzora inerciyi Taka sistema zavzhdi ortogonalna oskilki tenzor inerciyi zadayetsya Ermitovoyu matriceyu Koli rotator maye vis simetriyi vona zazvichaj zbigayetsya z odnoyu iz golovnih osej Zruchno obrati vis simetriyi najvishogo poryadku za vis z U pochatkovij moment chasu laboratornu sistemu sumishayut iz zakriplenoyu na tili tozh osi x y ta z zakriplenoyi sistemi zbigayutsya z osyami X Y ta Z prostorovoyi laboratornoyi sistemi Potim tilo povertayut na pevnij dodatnij kut a displaystyle alpha navkolo osi z proti godinnikovoyi strilki sho zmusit vis y displaystyle y zmistitisya v polozhennya y displaystyle y Tretim krokom tilo ta zakriplenu na nomu sistemu koordinat povertayut na kut b displaystyle beta navkolo osi y displaystyle y Vis z zakriplenoyi na tili sistemi pislya cih dvoh povorotiv matime stosovno neporushnoyi prostorovoyi sistemi polyarnij kut a displaystyle alpha zazvichaj jogo poznachayut f displaystyle varphi ta azimutalnij kut b displaystyle beta zazvichaj jogo poznachayut 8 displaystyle theta Yaksho rotator cilindrichnij vzdovzh osi z na kshtalt linijnogo zhorstkogo rotatora jogo polozhennya v prostori ye odnoznachno viznachenim Yaksho cilindrichnoyi simetriyi nema to ostannij povorot provoditsya navkolo osi z axis z kutovimi koordinatami b displaystyle beta ta a displaystyle alpha sho neobhidno dlya povnogo viznachennya oriyentaciyi tila Tradicijno ostannij kut povorotu nazivayut g displaystyle gamma abo ps displaystyle psi Taka konvenciya viznachennya kutiv Ejlera vidoma yak konvenciya z y z displaystyle z y z mozhna pokazati sho vona analogichna konvenciyi z y z displaystyle z y z u yakij poryadok povorotiv obernenij Povna matricya troh poslidovnih povorotiv ye dobutkom R a b g cos a sin a 0 sin a cos a 0 0 0 1 cos b 0 sin b 0 1 0 sin b 0 cos b cos g sin g 0 sin g cos g 0 0 0 1 displaystyle mathbf R alpha beta gamma begin pmatrix cos alpha amp sin alpha amp 0 sin alpha amp cos alpha amp 0 0 amp 0 amp 1 end pmatrix begin pmatrix cos beta amp 0 amp sin beta 0 amp 1 amp 0 sin beta amp 0 amp cos beta end pmatrix begin pmatrix cos gamma amp sin gamma amp 0 sin gamma amp cos gamma amp 0 0 amp 0 amp 1 end pmatrix Nehaj r 0 displaystyle mathbf r 0 ye radius vektorom dovilnoyi tochki tila P displaystyle mathcal P v zakriplenij na tili sistemi vidliku Pochatkovo r 0 displaystyle mathbf r 0 ye takozh radius vektrom tochki P displaystyle mathcal P v prostorovij sistemi koordinat Povoroti tila ne zminyuyut koordinati v sistemi zakriplenij na tili ale zminyuyut prostorovi koordinati tozh vektor P displaystyle mathcal P staye r a b g R a b g r 0 displaystyle mathbf r alpha beta gamma mathbf R alpha beta gamma mathbf r 0 Zokrema yaksho tochka P displaystyle mathcal P lezhit spochatku na osi Z yiyi koordinati stayut R a b g 0 0 r r cos a sin b r sin a sin b r cos b displaystyle mathbf R alpha beta gamma begin pmatrix 0 0 r end pmatrix begin pmatrix r cos alpha sin beta r sin alpha sin beta r cos beta end pmatrix sho demonstruye vidpovidnist sferichnij sistemi koordinat u konvenciyi sho vikoristovuyetsya v fizici Znannya kutiv Ejlera yak funkciyi chasu t ta pochatkovih koordinat r 0 displaystyle mathbf r 0 viznachaye kinematiku obertannya absolyutno tverdogo tila Klasichna kinetichna energiya Ce ye uzagalnennyam dobre vidomogo virazu dlya energiyi obertannya tila navkolo odnoyi osi Tut pripuskayetsya sho zakriplena na tili sistema koordinat ye sistemoyu golovnih osej vona diagonalizuye mittyeve znachennya tenzora momentu inerciyi I t displaystyle mathbf I t tobto R a b g 1 I t R a b g I 0 displaystyle mathbf R alpha beta gamma 1 mathbf I t mathbf R alpha beta gamma mathbf I 0 de I 0 I 1 0 0 0 I 2 0 0 0 I 3 displaystyle quad mathbf I 0 begin pmatrix I 1 amp 0 amp 0 0 amp I 2 amp 0 0 amp 0 amp I 3 end pmatrix Kuti Ejlera vvazhayutsya tut zalezhnimi vid chasu sho v svoyu chergu viznachaye zalezhnist vid chasu I t displaystyle mathbf I t Ce poznachennya oznachaye sho pri t 0 displaystyle t 0 kuti Ejlera nulovi tobto pri t 0 displaystyle t 0 zakriplena na tili sistema vidliku zbigayetsya z prostorovoyu Klasichna kinetichna energiya T zhorstkogo rotatora mozhe buti zapisana po riznomu yak funciya kutovih shvidkostej u lagranzhevij formi yak funkciya kutovogo momentu u gamiltonovij formi Oskilki kozhna z cih form vikoristovuyetsya i zapisana v pidruchnikah tut bude navedeno usi Cherez kutovi shvidkosti T virazhena cherez kutovi shvidkosti maye viglyad T 1 2 I 1 w x 2 I 2 w y 2 I 3 w z 2 displaystyle T frac 1 2 left I 1 omega x 2 I 2 omega y 2 I 3 omega z 2 right de w x w y w z sin b cos g sin g 0 sin b sin g cos g 0 cos b 0 1 a b g displaystyle begin pmatrix omega x omega y omega z end pmatrix begin pmatrix sin beta cos gamma amp sin gamma amp 0 sin beta sin gamma amp cos gamma amp 0 cos beta amp 0 amp 1 end pmatrix begin pmatrix dot alpha dot beta dot gamma end pmatrix Vektor w w x w y w z displaystyle boldsymbol omega omega x omega y omega z skladenij iz komponent kutovih shvidkostej rotatora shodo osej zakriplenih na tili Mozhna pokazati sho w displaystyle boldsymbol omega ne ye pohidnoyu bud yakogo vektora na vidminu vid zvichnogo oznachnnya shvidkosti Krapki nad ejlerovimi kutami oznachayut chasovi pohidni v notaciyi Nyutona Kutovi shvidkosti zadovolnyayut sistemu rivnyan vidomu pid nazvoyu ejlerovih iz nulovim momentom sili oskilki vvazhayetsya sho rotator obertayetsya u prostori vilnomu vid sil Forma Lagranzha Yaksho znovu pidstaviti viraz dlya w displaystyle boldsymbol omega u T mozhna otrimati kinetichnu energiyu v formi funkciyi Lagranzha yak funkciyu pohidnih vid ejlerovih kutiv U matrichnomu zapisu 2 T a b g g a b g displaystyle 2T begin pmatrix dot alpha amp dot beta amp dot gamma end pmatrix mathbf g begin pmatrix dot alpha dot beta dot gamma end pmatrix de g displaystyle mathbf g metrichnij tenzor virazhenij cherez ejlerovi kuti v krivolinijnih koordinatah g I 1 sin 2 b cos 2 g I 2 sin 2 b sin 2 g I 3 cos 2 b I 2 I 1 sin b sin g cos g I 3 cos b I 2 I 1 sin b sin g cos g I 1 sin 2 g I 2 cos 2 g 0 I 3 cos b 0 I 3 displaystyle mathbf g begin pmatrix I 1 sin 2 beta cos 2 gamma I 2 sin 2 beta sin 2 gamma I 3 cos 2 beta amp I 2 I 1 sin beta sin gamma cos gamma amp I 3 cos beta I 2 I 1 sin beta sin gamma cos gamma amp I 1 sin 2 gamma I 2 cos 2 gamma amp 0 I 3 cos beta amp 0 amp I 3 end pmatrix Cherez kutovij moment Dovoli chasto kinetichnu energiyu zapisuyut cherez kutovij moment L displaystyle mathbf L V obertovij sistemi vidliku vin maye komponenti L i displaystyle quad L i Mozhna pokazati sho vin zv yazanij z kutovoyu shvidkistyu L I 0 w displaystyle mathbf L mathbf I 0 boldsymbol omega abo L i T w i i x y z displaystyle L i frac partial T partial omega i i x y z U prostorovij fiksovanij sistemi jogo znachennya zberigayetsya tobto ne zalezhit vid chasu U zakriplenij na tili sistemi vidliku komponenti kutovogo momentu L i displaystyle quad L i zalezhat vid chasu Viraz dlya kinetichnoyi energiyi cherez kutovij moment maye viglyad T 1 2 L x 2 I 1 L y 2 I 2 L z 2 I 3 displaystyle T frac 1 2 left frac L x 2 I 1 frac L y 2 I 2 frac L z 2 I 3 right Gamiltonova forma U gamiltonovij formi kinetichna energiya zapisuyetsya cherez uzagalneni impulsi sho viznachayutsya yak p a p b p g d e f T a T b T g g a b g displaystyle begin pmatrix p alpha p beta p gamma end pmatrix stackrel mathrm def begin pmatrix partial T partial dot alpha partial T partial dot beta partial T partial dot gamma end pmatrix mathbf g begin pmatrix dot alpha dot beta dot gamma end pmatrix de vikoristano simetrichnist matrici g displaystyle mathbf g Sam viraz dlya kinetichnoyi energiyi maye viglyad 2 T p a p b p g g 1 p a p b p g displaystyle 2T begin pmatrix p alpha amp p beta amp p gamma end pmatrix mathbf g 1 begin pmatrix p alpha p beta p gamma end pmatrix de obernenij metrichnij tenzor zadayetsya yak sin 2 b g 1 displaystyle scriptstyle sin 2 beta mathbf g 1 cos 2 g I 1 sin 2 g I 2 1 I 2 1 I 1 sin b sin g cos g cos b cos 2 g I 1 cos b sin 2 g I 2 1 I 2 1 I 1 sin b sin g cos g sin 2 b sin 2 g I 1 sin 2 b cos 2 g I 2 1 I 1 1 I 2 sin b cos b sin g cos g cos b cos 2 g I 1 cos b sin 2 g I 2 1 I 1 1 I 2 sin b cos b sin g cos g cos 2 b cos 2 g I 1 cos 2 b sin 2 g I 2 sin 2 b I 3 displaystyle begin pmatrix frac cos 2 gamma I 1 frac sin 2 gamma I 2 amp left frac 1 I 2 frac 1 I 1 right scriptstyle sin beta sin gamma cos gamma amp frac cos beta cos 2 gamma I 1 frac cos beta sin 2 gamma I 2 left frac 1 I 2 frac 1 I 1 right scriptstyle sin beta sin gamma cos gamma amp frac sin 2 beta sin 2 gamma I 1 frac sin 2 beta cos 2 gamma I 2 amp left frac 1 I 1 frac 1 I 2 right scriptstyle sin beta cos beta sin gamma cos gamma frac cos beta cos 2 gamma I 1 frac cos beta sin 2 gamma I 2 amp left frac 1 I 1 frac 1 I 2 right scriptstyle sin beta cos beta sin gamma cos gamma amp frac cos 2 beta cos 2 gamma I 1 frac cos 2 beta sin 2 gamma I 2 frac sin 2 beta I 3 end pmatrix Cej obernenij tenzor potriben dlya otrimannya operatora Laplasa Beltrami yakij pomnozhenij na ℏ 2 displaystyle hbar 2 zadaye operator energiyi zhorstkogo rotatora v kvantovij mehanici Navedenu klasichnu funkciyu Gamiltona mozhna perepisati u viglyadi neobhidnomu dlya integruvannya u fazovomu prostori klasichnoyi statistichnoyi mehaniki T 1 2 I 1 sin 2 b p a p g cos b cos g p b sin b sin g 2 1 2 I 2 sin 2 b p a p g cos b sin g p b sin b cos g 2 p g 2 2 I 3 displaystyle begin array lcl T amp amp frac 1 2I 1 sin 2 beta left p alpha p gamma cos beta cos gamma p beta sin beta sin gamma right 2 amp amp frac 1 2I 2 sin 2 beta left p alpha p gamma cos beta sin gamma p beta sin beta cos gamma right 2 frac p gamma 2 2I 3 end array Zhorstkij rotator u kvantovij mehanici Div takozh Rotacijna spektroskopiya Yak zazvichaj perehid do kvantovoyi mehaniki zdijsnyuyetsya zaminoyu uzagalnenih impulsiv na operatori v yakih figuruyut pohidni shodo kanonichno spryazhenih uzagalnenih koordinat Tak p a i ℏ a displaystyle p alpha longrightarrow i hbar frac partial partial alpha i analogichno shodo p b displaystyle p beta ta p g displaystyle p gamma Na divo ce pravilo zvodit dovoli skladnu funkciyu kutiv Ejlera yihnih pohidnih ta momentiv inerciyi do prostogo diferencialnogo operatora yakij ne zalezhit vid chasu chi vid momentiv inerciyi i v yakomu figuruye pohidna tilki vid odnogo z kutiv Ejlera Cogo pravila kvantuvannya dostatno shob otrimati operatori sho vidpovidayut klasichnim kutovim momentam Isnuye dva vidi kutovih momentiv ti sho viznachayutsya u fiksovanij prostorovij sistemi vidliku ta ti sho zv yazani z tilom Yak i ti tak i inshu ye vektornimi operatorami tobto mayut tri skladovi sho peretvoryuyutsya pri obertanni fiksovanoyi protorovoyi sistemi ta sistemi zv yazanoyi z tilom vidpovidno yak vektori Tochna forma kutovih momentiv zhorstkogo rotatatora zadayetsya D matriceyu Vignera yaku vtim slid pomnozhiti na ℏ displaystyle hbar U sistemi tila operatori kutovogo momentu zapisuyutsya yak P i displaystyle hat mathcal P i Voni mayut nezvichni komutacijni spivvidnoshennya Pravila kvantuvannya ne vistachaye shob zapisati operator kinetichnoyi energiyi vihodyachi z klasichnogo gamiltoniana Oskilki v klasichnij fizici p b displaystyle p beta komutuye z cos b displaystyle cos beta ta sin b displaystyle sin beta j obernenimi do nih funkciyami polozhennya cih trigonometrichnih funcij u klasichnij funkciyi Gamiltona dovilne Pislya kvantuvannya komutaciyi uzhe bilshe nema i poryadok operatoriv ta funkcij v gamiltoniani vazhko viznachiti Podolskij u 1928 zaproponuvav vikoristovuvati operator Laplasa Beltrami pomnozhenij na 1 2 ℏ 2 displaystyle tfrac 1 2 hbar 2 sho maye vidpovidnu formu dlya togo shob grati rol kvantomehanichnogo operatora energiyi Forma cogo operatora taka vikoristovuyetsya konvenciya pidsumovuvannya povtorennya indeksiv oznachaye sumu u comu vipadku ce stosuyetsya troh kutiv Ejlera q 1 q 2 q 3 a b g displaystyle q 1 q 2 q 3 equiv alpha beta gamma H ℏ 2 2 g 1 2 q i g 1 2 g i j q j displaystyle hat H tfrac hbar 2 2 g 1 2 frac partial partial q i g 1 2 g ij frac partial partial q j de g displaystyle g poznachaye determinant tenzora g g I 1 I 2 I 3 sin 2 b displaystyle g I 1 I 2 I 3 sin 2 beta g i j g 1 i j displaystyle g ij mathbf g 1 ij Otrimavshi obernenij metrichnij tenzor mozhna zapisati operator kinetichnoyi energiyi cherez ejlerovi kuti za dopomogoyu prostoyi pidstanovki zauvazhennya vidpovidne rivnyannya na vlasni znachennya ye rivnyannyam Shredingera dlya zhorstkogo rotatora u formi dlya yakoyi bulo vpershe znajdeno rozv yazok Kronigom ta Rabi dlya vipadku simetrichnogo rotatora Ce odin iz nebagatoh vipadkiv koli rivnyannya Shredingera mozhna rozv yazati analitichno Usi rozv yazki bulo znajdeno uprodovzh roku pislya formulyuvannya rivnyannya Shredingera Zaraz zazvichaj postupayut tak mozhna pokazati sho H displaystyle hat H virazhayetsya v obertovij sistemii vidliku cherez operatori kutovogo momentu pri dovedenni potribno buti oberezhnim shodo komutaciyi diferencijnih operatoriv ta trigonometrichnih funkcij Rezultat viglyadaye analogichno klasichnomu H 1 2 P x 2 I 1 P y 2 I 2 P z 2 I 3 displaystyle hat H tfrac 1 2 left frac mathcal P x 2 I 1 frac mathcal P y 2 I 2 frac mathcal P z 2 I 3 right Diya operatoriv P i displaystyle hat mathcal P i na D matrici Vignera prosta Zokrema P 2 D m m j a b g ℏ 2 j j 1 D m m j a b g displaystyle mathcal P 2 D m m j alpha beta gamma hbar 2 j j 1 D m m j alpha beta gamma P 2 P x 2 P y 2 P z 2 displaystyle mathcal P 2 mathcal P x 2 mathcal P y 2 mathcal P z 2 tozh rivnyannya Shredingera dlya sferichnogo rotora I I 1 I 2 I 3 displaystyle I I 1 I 2 I 3 rozv yazuyetsya viznachayet 2 j 1 2 displaystyle 2j 1 2 virodzheni rivni energiyi ℏ 2 j j 1 2 I displaystyle tfrac hbar 2 j j 1 2I Simetrichnij rotator maye I 1 I 2 displaystyle I 1 I 2 Vin vigyagnutij yak sigara yaksho I 3 lt I 1 I 2 displaystyle I 3 lt I 1 I 2 U comu vipadku gamiltonian zapisuyetsya H 1 2 P 2 I 1 P z 2 1 I 3 1 I 1 displaystyle hat H tfrac 1 2 left frac mathcal P 2 I 1 mathcal P z 2 Big frac 1 I 3 frac 1 I 1 Big right i vikoristovuyetsya P z 2 D m k j a b g ℏ 2 k 2 D m k j a b g displaystyle mathcal P z 2 D mk j alpha beta gamma hbar 2 k 2 D mk j alpha beta gamma Otzhe H D m k j a b g E j k D m k j a b g displaystyle hat H D mk j alpha beta gamma E jk D mk j alpha beta gamma deE j k ℏ 2 j j 1 2 I 1 k 2 1 2 I 3 1 2 I 1 displaystyle E jk hbar 2 frac j j 1 2I 1 k 2 left frac 1 2I 3 frac 1 2I 1 right Vlasne znachennya E j 0 displaystyle E j0 virodzheno 2 j 1 displaystyle 2j 1 raziv usi vlasni funkciyi z m j j 1 j displaystyle m j j 1 dots j mayut odnakove vlasne znachennya Energiyi z k gt 0 virodzheni 2 2 j 1 displaystyle 2 2j 1 raziv Cej tochnij rozv yazok rivnyannya Shredingera dlya simetrichnogo rotatora bulo znajdeno v 1927 Zadacha pro obertannya nesimetrichnogo rotatora I 1 I 2 I 3 displaystyle I 1 neq I 2 neq I 3 tochno ne rozv yazuyetsya Pryame eksperimentalne sposterezhennya obertan molekulObertannya molekuli vprodovzh dovgogo chasu bezposeredno sposterigati ne vdavalosya Tilki rozrobka tehnologiyi vimiryuvannya z atomnoyu rozdilnistyu zrobila jogo mozhlivim Pri nizkih temperaturah obertannya molekul mozhna zamoroziti povnistyu abo chastkovo Todi jogo mozhna bachiti v tunelnih mikroskopah stabilizaciyu pri vishih temperaturah mozhna poyasniti obertalnoyu entropiyeyu Pryame sposterezhennya zbudzhennya obertannya u viokremlenij odinochnij molekuli vdalosya pobachiti neshodavno vikoristovuyuchi spektroskopiyu nepruzhnogo tunelyuvannya elektroniv u tunelnomu mikroskopi VinoskiDavydov A S 1973 Kvantovaya mehanika Moskva Nauka Podolsky B 1928 Phys Rev 32 812 Bibcode 1928PhRv 32 812P doi 10 1103 PhysRev 32 812 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite journal title Shablon Cite journal cite journal a Propushenij abo porozhnij title dovidka Chapter 4 9 of Goldstein H Poole C P Safko J L 2001 Classical Mechanics Third ed San Francisco Addison Wesley Publishing Company ISBN 0 201 65702 3 R de L Kronig and I I Rabi 1927 The Symmetrical Top in the Undulatory Mechanics Phys Rev 29 262 269 Bibcode 1927PhRv 29 262K doi 10 1103 PhysRev 29 262 J K Gimzewski C Joachim R R Schlittler V Langlais H Tang I Johannsen 1998 Rotation of a Single Molecule Within a Supramolecular Bearing German Science 281 5376 pp 531 533 doi 10 1126 science 281 5376 531 Thomas Waldmann Jens Klein Harry E Hoster R Jurgen Behm 2012 Stabilization of Large Adsorbates by Rotational Entropy A Time Resolved Variable Temperature STM Study German ChemPhysChem pp n a n a doi 10 1002 cphc 201200531 S Li A Yu A F Toledo Z Han H Wang H Y He R Wu and W Ho Phys Rev Lett 111 146102 2013 http journals aps org prl abstract 10 1103 PhysRevLett 111 146102 F D Natterer F Patthey and H Brune Phys Rev Lett 111 175303 2013 http journals aps org prl abstract 10 1103 PhysRevLett 111 175303