Підтримка
www.wikidata.uk-ua.nina.az
Ne plutati z teoremoyu Lyajbnica v geometriyi Teorema Lejbnica oznaka Lejbnica pravilo Lejbnica abo kriterij Lejbnica teorema u matematichnomu analizi dovedena Gotfridom Lejbnicem sho daye dostatni umovi zbizhnosti znakoperemizhnnogo ryadu zi spadayuchimi chlenami za absolyutnim znachennyam TverdzhennyaYaksho poslidovnist a n displaystyle a n spadaye monotonno 1 i lim n a n 0 displaystyle lim limits n to infty a n 0 tobto 0 lt a n 1 lt a n displaystyle 0 lt a n 1 lt a n lim n a n 0 displaystyle lim n to infty a n 0 to znakoperemizhnij ryad ye zbizhnim DovedennyaNehaj zadano ryad viglyadu n 1 1 n 1 a n displaystyle sum limits n 1 infty 1 n 1 a n de lim n a n 0 displaystyle lim limits n to infty a n 0 i a n a n 1 displaystyle a n geq a n 1 dlya usih n N displaystyle n in mathbb N Vipadok n 1 1 n a n displaystyle sum limits n 1 infty 1 n a n viplivaye z cogo dovedennya yaksho vibrati vid yemni chleni Dovedennya zbizhnostiDovedemo sho obidvi chastkovi sumi S 2 m 1 n 1 2 m 1 1 n 1 a n displaystyle S 2m 1 sum limits n 1 2m 1 1 n 1 a n z neparnoyu kilkistyu elementiv ta S 2 m n 1 2 m 1 n 1 a n displaystyle S 2m sum limits n 1 2m 1 n 1 a n z parnoyu kilkistyu zbigayutsya do odnogo i togo zh znachennya L displaystyle L Todi zvichajna chastkova suma S k n 1 k 1 n 1 a n displaystyle S k sum limits n 1 k 1 n 1 a n takozh zbigayetsya do L displaystyle L Neparni chastkovi sumi spadayut monotonno S 2 m 1 1 S 2 m 1 a 2 m 2 a 2 m 3 S 2 m 1 displaystyle S 2 m 1 1 S 2m 1 a 2m 2 a 2m 3 leq S 2m 1 u toj chas yak parni chastkovi sumi zrostayut monotonno S 2 m 1 S 2 m a 2 m 1 a 2 m 2 S 2 m displaystyle S 2 m 1 S 2m a 2m 1 a 2m 2 geq S 2m Obidva vipadki vikonuyutsya tomu sho znachennya a n displaystyle a n zmenshuyetsya monotonno iz zbilshennyam n displaystyle n Zapishemo chastkovu sumu parnogo poryadku tak S 2 m n 1 2 m 1 n 1 a n a 1 a 2 a 3 a 4 a 2 n 1 a 2 n displaystyle S 2m sum limits n 1 2m 1 n 1 a n a 1 a 2 a 3 a 4 dots a 2n 1 a 2n Oskilki vsi dodanki v duzhkah bilshi nulya to poslidovnist S 2 m displaystyle S 2m ye zrostayuchoyu Z inshogo boku mozhna zapisati S 2 m a 1 a 2 a 3 a 4 a 5 a 2 n 2 a 2 n 1 a 2 n displaystyle S 2m a 1 a 2 a 3 a 4 a 5 dots a 2n 2 a 2n 1 a 2n tobto S 2 m lt a 1 displaystyle S 2m lt a 1 Zapishemo chastkovu sumu parnogo poryadku tak S 2 N n 1 2 N 1 n 1 a n a 1 a 2 a 3 a 4 a 2 N 1 a 2 N displaystyle S 2N sum n 1 2N 1 n 1 a n left a 1 a 2 right left a 3 a 4 right ldots left a 2N 1 a 2N right Oskilki vsi dodanki v duzhkah bilshi nulya to poslidovnist S 2 N displaystyle S 2N ye zrostayuchoyu Z inshogo boku mozhna zapisati S 2 N a 1 a 2 a 3 a 4 a 5 a 2 N 2 a 2 N 1 a 2 N displaystyle S 2N a 1 left a 2 a 3 right left a 4 a 5 right ldots left a 2N 2 a 2N 1 right a 2N tobto S 2 N lt a 1 displaystyle S 2N lt a 1 Otzhe poslidovnist parnih chastkovih sum ye obmezhenoyu i zrostayuchoyu a znachit zbizhnoyu Dlya neparnih chastkovih sum mayemo S 2 m 1 S m n a 2 n displaystyle S 2m 1 S mn a 2n i oskilki a 2 n displaystyle a 2n zbigayetsya do nulya granicya S 2 m 1 displaystyle S 2m 1 isnuye i rivna granici S 2 m displaystyle S 2m Dane chislo i bude sumoyu ryadu Krim togo oskilki a n displaystyle a n dodatni to S 2 m 1 S 2 m a 2 n 1 0 displaystyle S 2m 1 S 2m a 2n 1 geq 0 Takim chinom vikoristovuyuchi ci fakti mozhemo sformulyuvati nastupnu poslidovnist nerivnostej a 1 a 2 S 2 S 2 m S 2 m 1 S 1 a 1 displaystyle a 1 a 2 S 2 leq S 2m leq S 2m 1 leq S 1 a 1 Zauvazhimo sho chislo a 1 a 2 displaystyle a 1 a 2 ye nizhnoyu mezheyu monotonno spadayuchoyi poslidovnosti S 2 m 1 displaystyle S 2m 1 Todi z teoremi Levi pro monotonnu zbizhnist viplivaye sho cya poslidovnist ye zbizhnoyu pri pryamuvanni m displaystyle m do neskinchennosti Zbizhnist poslidovnist parnih chastkovih sumi dovoditsya analogichno Otzhe voni zbigayutsya do togo zh chisla oskilki lim m S 2 m 1 S 2 m lim m a 2 m 1 0 displaystyle lim m to infty S 2m 1 S 2m lim m to infty a 2m 1 0 Poznachimo granicyu yak L displaystyle L todi teorema pro monotonnu zbizhnist dodatkovo daye nam sho S 2 m L S 2 m 1 displaystyle S 2m leq L leq S 2m 1 dlya bud yakogo m displaystyle m Ce oznachaye sho chastkovi sumi znakoperemizhnogo ryadu takozh cherguyutsyavishe i nizhche finalnoyi granici Tochnishe koli ye neparna parna kilkist chleniv tobto ostannij chlen ye dodatnim vid yemnim todi chastkova suma znahoditsya vishe nizhche kincevoyi granici Ce rozuminnya negajno privodit do ocinki zalishku chastkovih sum yak pokazano nizhche Dovedennya dlya ocinki zalishku chastkovih sumPokazhemo sho S k L a k 1 displaystyle S k L leq a k 1 rozglyanuvshi dva vipadki Yaksho k 2 m 1 displaystyle k 2m 1 tobto neparne to S 2 m 1 L S 2 m 1 L S 2 m 1 S 2 m 2 a 2 m 1 1 displaystyle S 2m 1 L S 2m 1 L leq S 2m 1 S 2m 2 a 2m 1 1 Yaksho k 2 m displaystyle k 2m tobto parne to S 2 m L L S 2 m S 2 m 1 S 2 m a 2 m 1 displaystyle S 2m L L S 2m leq S 2m 1 S 2m a 2m 1 Obidva vipadki suttyevo vikoristovuyut ostannyu nerivnist yaku bulo otrimano v poperednomu dovedenni Dlya alternativnogo dovedennya vikoristovuyut oznaku zbizhnosti Koshi divis znakoperemizhnij ryad Dlya uzagalnennya divisya oznaku Dirihle NaslidokZ teorem Lejbnica mozhna ociniti pohibku obchislennya sumi ryadu S n m 0 n a m displaystyle S n sum m 0 n a m Zalishok ryadu R n S S n displaystyle R n S S n za modulem bude menshe pershogo vidkinutogo dodanku R n lt a n 1 displaystyle left R n right lt left a n 1 right KontrprikladUsi umovi oznaki a same zbizhnist do 0 displaystyle 0 i monotonnist mayut vikonuvatisya dlya togo shob visnovok buv spravedlivim Napriklad rozglyanemo ryad 1 2 1 1 2 1 1 3 1 1 3 1 displaystyle frac 1 sqrt 2 1 frac 1 sqrt 2 1 frac 1 sqrt 3 1 frac 1 sqrt 3 1 cdots Znaki cherguyutsya a elementi pryamuyut do nulya Odnak monotonnist vidsutnya sho ne dozvolyaye zastosuvati oznaku Naspravdi ryad ye rozbizhnim Dijsno dlya chastkovih sum S 2 n displaystyle S 2n mayemo S 2 n 2 1 2 2 2 3 2 n 1 displaystyle S 2n frac 2 1 frac 2 2 frac 2 3 cdots frac 2 n 1 sho ye podvoyenoyu chastkovoyu sumoyu garmonichnogo ryadu yakij ye rozbizhnim Takim chinom pochatkovij ryad ye rozbizhnim Sho j treba bulo dovesti Div takozhZnakoperemizhnij ryad Oznaka DirihlePrimitki Na praktici pershi dekilka chleniv mozhut zrostati Vazhlivo te sho a n a n 1 displaystyle a n geq a n 1 dlya usih n displaystyle n pochinayuchi z deyakogo nomera DzherelaGrigorij Mihajlovich Fihtengolc Kurs diferencialnogo ta integralnogo chislennya 2024 2200 s ukr Konrad Knopp 1956 Infinite Sequences and Series 3 4 Dover Publications ISBN 0 486 60153 6 Konrad Knopp 1990 Theory and Application of Infinite Series 15 Dover Publications ISBN 0 486 66165 2 E T Whittaker amp G N Watson 1963 A Course in Modern Analysis 4th edition 2 3 Cambridge University Press ISBN 0 521 58807 3 Oznaka Lejbnica Visha matematika v prikladah i zadachah Klepko V Yu Golec V L 2 ge vidannya K Centr uchbovoyi literaturi 2009 S 513 594 s Weisstein Eric W Leibniz Criterion angl na sajti Wolfram MathWorld PrimitkiDovedennya bazuyetsya na roboti James Stewart 2012 Calculus Early Transcendentals Seventh Edition pp 727 730 ISBN 0 538 49790 4 Dawkins Paul Calculus II Alternating Series Test Paul s Online Math Notes Lamar University Procitovano 1 listopada 2019 Ce nezavershena stattya z matematiki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi
Топ