Метод Крамера (правило Крамера) — спосіб розв'язання квадратних систем лінійних алгебраїчних рівнянь із ненульовим визначником основної матриці (при цьому для таких рівнянь існує єдиний розв'язок). Правило Крамера виражає розв'язок через визначники квадратної матриці коефіцієнтів та матриць, отриманих шляхом заміни одного стовпця матриці коефіцієнтів вектор-стовпцем правої частини рівняння. Цей метод названий на честь Габрієля Крамера (1704—1752), який у 1750 р. представив його для довільної кількості невідомих. Колін Маклорен також публікував особливі випадки цього правила в 1748 р. (і, можливо, знав про нього ще в 1729 р.).
Метод Крамера | |
Названо на честь | Габрієль Крамер |
---|---|
Підтримується Вікіпроєктом | |
Метод Крамера у Вікісховищі |
Правило Крамера, реалізоване наївним шляхом, є неефективним для систем, що складаються більше ніж з двох або трьох рівнянь. У випадку рівнянь з невідомими, воно потребує обчислення визначників, тоді як метод Гауса дає результат із такою ж обчислювальною складністю, як і обчислення одного визначника.
Правило Крамера також може бути чисельно нестійким навіть для систем . Однак нещодавно його було реалізовано за кроків, що порівняно з більш поширеними методами розв'язання систем лінійних рівнянь, такими як метод Гауса (вимагається в 2,5 рази більше арифметичних операцій для всіх розмірів матриць), виявляє порівнянну числову стійкість у більшості випадків.
Загальний випадок
Розглянемо систему з лінійних рівнянь для невідомих, записану в матричному вигляді
- ,
де — матриця з ненульовим визначником, і — вектор-стовпець змінних. Теорема стверджує, що в цьому випадку система має єдиний розв'язок, у якому значення невідомих визначаються як
- ,
де — матриця, утворена заміною -го стовпця матриці на вектор-стовпець .
Іншими словами, для системи лінійних рівнянь з невідомими (над довільним полем)
з визначником матриці системи , що не рівний нулю, розв'язок записується у такому вигляді:
(-й стовпчик матриці системи замінюється стовпчиком вільних членів).
Також правило Крамера формулюється так: для будь-яких коефіцієнтів виконується рівність:
У такій формі формула Крамера справедлива без припущення, що не рівне нулю, не треба, навіть, аби коефіцієнти системи були елементами цілісного кільця (визначник системи навіть може бути дільником нуля у кільці коефіцієнтів). Також можна вважати, що або набори та , або набір складаються не з елементів кільця коефіциєнтів системи, а деякого модуля над цим кільцем. В такому вигляді формула Крамера використовується, наприклад, при доведенні формули для визначника Грама і Леми Накаями.
Більш загальна версія правила Крамера розглядає матричне рівняння
де — матриця з ненульовим визначником, а , — матриці. Розглянемо послідовності та . Нехай — підматриця з рядками та стовпцями , — матриця, утворена заміною стовпця матриці на стовпець матриці , для всіх . Тоді
У випадку , це зводиться до звичайного правила Крамера.
Метод справедливий для систем рівнянь з коефіцієнтами та невідомими над будь-яким полем, а не лише у випадку дійсних чисел.
Доведення
Доведення правила Крамера використовує такі (властивості визначника): лінійність відносно будь-якого фіксованого стовпця і той факт, що визначник дорівнює нулю, коли два стовпці рівні (це випливає із властивості, що знак визначника змінюється на протилежний, якщо переставити два стовпці).
Зафіксуємо -й стовпець. Лінійність означає наступне: якщо розглядаємо лише стовпець як змінну (фіксуючи інші довільно), отримана функція (вважаємо елементи матриці дійсними числами) може бути задана матрицею, з одним рядком і стовпцями, що діє на -й стовпець. Насправді, це саме те, що й теорема Лапласа: записуючи для певних коефіцієнтів , які залежать від стовпців матриці , відмінних від стовпця (точний вигляд для цих мінорів тут неважливий). Тоді значення є результатом застосування однорядкової матриці до стовпця матриці . Якщо застосовано до будь-якого іншого стовпця матриці , то результатом є визначник матриці, отриманої з матриці , заміною стовпця на копію стовпця , тому отриманий визначник дорівнює (випадок двох рівних стовпців).
Тепер розглянемо систему лінійних рівнянь з невідомими , матрицею коефіцієнтів якої є з ненульовим визначником ,
Якщо об'єднати ці рівняння, взявши , помножене на перше рівняння, додати , помножене на друге, і так далі, поки домножиться на останнє рівняння, то коефіцієнт при буде дорівнювати , тоді як коефіцієнти при всіх інших невідомих стають нулями; ліва частина набуває вигляду . Права частина — це , тобто , застосований до вектора-стовпця утвореного правими частинами . Насправді, те, що було зроблено тут, — домноження матричного рівняння зліва на . Поділивши на ненульове число , знаходимо наступне рівняння, що задовольняє систему:
Але, за побудовою, чисельник є визначником матриці, отриманої з матриці , заміною стовпця на , тому отримуємо вираз для правила Крамера як необхідну умову розв'язку. Цю саму процедуру треба повторити для решти , щоб знайти значення інших невідомих.
Залишається довести, що ці значення для невідомих єдині та дійсно разом утворюють розв'язок системи. Але, якщо матриця невироджена з оберненою матрицею , то буде розв'язком, що й доводить його існування. Покажемо, що матриця має обернену, якщо ненульовий. Розглянемо матрицю , отриману шляхом складання одна над одною однорядкових матриць при (це дає приєднану матрицю для матриці ). Було показано, що , де з'являється на позиції ; з цього випливає, що . Отже,
що і завершує доведення
Інші доведення див.нижче.
Приклад
Система лінійних рівнянь:
Визначники:
Розв'язок:
Приклад:
Визначники:
Знаходження оберненої матриці
Нехай — матриця з елементами в полі . Тоді
де — приєднана матриця, — визначник матриці , а — одинична матриця. Якщо визначник ненульовий, то оберненою до є матриця
Це дає формулу для оберненої до матриці, за умови, що . Насправді ця формула працює, коли є комутативним кільцем, за умови, що є одиницею кільця. Якщо не є одиницею, то не має оберненої над кільцем (вона може мати обернену над більшим кільцем, в якому деякі не одиничні елементи поля можуть мати обернені).
Застосування
Явні формули для n=2 та n=3
Розглянемо лінійну систему
яка у матричній формі має вигляд
Нехай значення ненульове. Тоді, за допомогою визначників, і можуть бути знайдені за правилом Крамера як
Правила для матриць аналогічні. Розглянемо систему
яка у матричній формі має вигляд
Тоді значення , та можна знайти наступним чином:
- та
Диференціальна геометрія
Числення Річчі
Правило Крамера використовується в [en] при різних розрахунках із залученням символів Крістофеля першого та другого роду.
Зокрема, за правилом Крамера можна довести, що оператор дивергенції на многовиді Рімана є інваріантним відносно заміни координат. Наводимо пряме доведення, опускаючи роль символів Крістофеля. Нехай — многовид Рімана, з [en] . Нехай — векторне поле. Використовуємо нотацію Ейнштейна для підсумовування.
- Теорема.
- Дивергенція векторного поля ,
- є інваріантною при заміні координат.
Доведення |
---|
Нехай є (координатним перетворенням) з невиродженою матрицею Якобі. Тоді, відповідно до класичних [en], маємо, що , де . Аналогічно, якщо , то . Запис цього перетворення за допомогою матриць має вигляд , звідки випливає, що . Тепер обчислюємо Щоб продемонструвати, що це дорівнює необхідно і достатньо показати, що
що еквівалентно Продиференціювавши ліву частину, отримуємо де позначає матрицю, отриману з після видалення -го рядка і -го стовпця. Але за правилом Крамера є -м елементом матриці . Таким чином, що і завершує доведення. |
Обчислення неявних похідних
Розглянемо два рівняння та . Якщо і є незалежними змінними, то можемо визначити та .
Вираз для можна знайти, застосувавши правило Крамера.
Обчислення |
---|
Спочатку обчислимо перші похідні від , , та : Підставивши , в і , отримаємо Оскільки , незалежні змінні, то коефіцієнти при та повинні бути нульовими. Отже, можемо записати рівняння для коефіцієнтів: Тепер, за правилом Крамера, бачимо, що Тобто, це формула у термінах двох Якобіанів: Аналогічні формули можна отримати для , , |
Цілочисельне програмування
Правило Крамера може бути використане для доведення, що задача цілочисельного програмування, матриця обмежень якої є унімодулярною матрицею, а правою частиною є ціле число, має цілочисельні базисні розв'язки. Це значно спрощує розв'язання цілочисельної програми.
Звичайні диференціальні рівняння
Правило Крамера використовується для виведення загального розв'язку неоднорідного лінійного диференціального рівняння методом варіації параметрів (метод варіації довільних сталих).
Геометрична інтерпретація
Правило Крамера має геометричну інтерпретацію, яку також можна розглядати як доведення або для розуміння його геометричного змісту. Ці геометричні аргументи працюють загалом, а не лише у випадку двох рівнянь із двома невідомими, що представлений тут.
Задану систему рівнянь
можна розглядати як рівняння між векторами
Площа паралелограма, визначеного векторами і , задається визначником системи рівнянь:
У загальному випадку, коли є більше змінних та рівнянь, визначник з векторів довжини — це об'єм паралелепіпеда, що побудований на цих векторах в -вимірному евклідовому просторі.
Отже, площа паралелограма, визначеного і , дорівнює помножено на площу першого, оскільки одну зі сторін помножили на цей коефіцієнт. Тепер останній паралелограм, за принципом Кавальєрі, має ту ж площу, що і паралелограм, визначений через та
Прирівнювання площ останнього та другого паралелограма дає рівняння
з якого випливає правило Крамера.
Інші доведення
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Metod Kramera pravilo Kramera sposib rozv yazannya kvadratnih sistem linijnih algebrayichnih rivnyan iz nenulovim viznachnikom osnovnoyi matrici pri comu dlya takih rivnyan isnuye yedinij rozv yazok Pravilo Kramera virazhaye rozv yazok cherez viznachniki kvadratnoyi matrici koeficiyentiv ta matric otrimanih shlyahom zamini odnogo stovpcya matrici koeficiyentiv vektor stovpcem pravoyi chastini rivnyannya Cej metod nazvanij na chest Gabriyelya Kramera 1704 1752 yakij u 1750 r predstaviv jogo dlya dovilnoyi kilkosti nevidomih Kolin Makloren takozh publikuvav osoblivi vipadki cogo pravila v 1748 r i mozhlivo znav pro nogo she v 1729 r Metod Kramera Nazvano na chestGabriyel Kramer Pidtrimuyetsya VikiproyektomVikipediya Proyekt Matematika Metod Kramera u Vikishovishi Pravilo Kramera realizovane nayivnim shlyahom ye neefektivnim dlya sistem sho skladayutsya bilshe nizh z dvoh abo troh rivnyan U vipadku n displaystyle n rivnyan z n displaystyle n nevidomimi vono potrebuye obchislennya n 1 displaystyle n 1 viznachnikiv todi yak metod Gausa daye rezultat iz takoyu zh obchislyuvalnoyu skladnistyu yak i obchislennya odnogo viznachnika Pravilo Kramera takozh mozhe buti chiselno nestijkim navit dlya sistem 2 2 displaystyle 2 times 2 Odnak neshodavno jogo bulo realizovano za O n 3 displaystyle O n 3 krokiv sho porivnyano z bilsh poshirenimi metodami rozv yazannya sistem linijnih rivnyan takimi yak metod Gausa vimagayetsya v 2 5 razi bilshe arifmetichnih operacij dlya vsih rozmiriv matric viyavlyaye porivnyannu chislovu stijkist u bilshosti vipadkiv Zagalnij vipadokRozglyanemo sistemu z n displaystyle n linijnih rivnyan dlya n displaystyle n nevidomih zapisanu v matrichnomu viglyadi A x b displaystyle A boldsymbol x boldsymbol b de A displaystyle A n n displaystyle n times n matricya z nenulovim viznachnikom i x x 1 x n T displaystyle boldsymbol x x 1 dots x n rm T vektor stovpec zminnih Teorema stverdzhuye sho v comu vipadku sistema maye yedinij rozv yazok u yakomu znachennya nevidomih viznachayutsya yak x i det A i det A i 1 n displaystyle x i frac det A i det A qquad i 1 dots n de A i displaystyle A i matricya utvorena zaminoyu i displaystyle i go stovpcya matrici A displaystyle A na vektor stovpec b displaystyle boldsymbol b Inshimi slovami dlya sistemi n displaystyle n linijnih rivnyan z n displaystyle n nevidomimi nad dovilnim polem a 11 x 1 a 12 x 2 a 1 n x n b 1 a 21 x 1 a 22 x 2 a 2 n x n b 2 a n 1 x 1 a n 2 x 2 a n n x n b n displaystyle begin cases a 11 x 1 a 12 x 2 ldots a 1n x n b 1 a 21 x 1 a 22 x 2 ldots a 2n x n b 2 cdots cdots cdots cdots cdots cdots cdots cdots cdots cdots a n1 x 1 a n2 x 2 ldots a nn x n b n end cases z viznachnikom matrici sistemi D displaystyle Delta sho ne rivnij nulyu rozv yazok zapisuyetsya u takomu viglyadi x i 1 D a 11 a 1 i 1 b 1 a 1 i 1 a 1 n a 21 a 2 i 1 b 2 a 2 i 1 a 2 n a n 1 1 a n 1 i 1 b n 1 a n 1 i 1 a n 1 n a n 1 a n i 1 b n a n i 1 a n n displaystyle x i frac 1 Delta begin vmatrix a 11 amp ldots amp a 1 i 1 amp b 1 amp a 1 i 1 amp ldots amp a 1n a 21 amp ldots amp a 2 i 1 amp b 2 amp a 2 i 1 amp ldots amp a 2n ldots amp ldots amp ldots amp ldots amp ldots amp ldots amp ldots a n 1 1 amp ldots amp a n 1 i 1 amp b n 1 amp a n 1 i 1 amp ldots amp a n 1 n a n1 amp ldots amp a n i 1 amp b n amp a n i 1 amp ldots amp a nn end vmatrix i displaystyle i j stovpchik matrici sistemi zaminyuyetsya stovpchikom vilnih chleniv Takozh pravilo Kramera formulyuyetsya tak dlya bud yakih koeficiyentiv c 1 c 2 c n displaystyle c 1 c 2 dots c n vikonuyetsya rivnist c 1 x 1 c 2 x 2 c n x n D a 11 a 12 a 1 n b 1 a 21 a 22 a 2 n b 2 a n 1 a n 2 a n n b n c 1 c 2 c n 0 displaystyle c 1 x 1 c 2 x 2 dots c n x n cdot Delta begin vmatrix a 11 amp a 12 amp ldots amp a 1n amp b 1 a 21 amp a 22 amp ldots amp a 2n amp b 2 ldots amp ldots amp ldots amp ldots amp ldots a n1 amp a n2 amp ldots amp a nn amp b n c 1 amp c 2 amp ldots amp c n amp 0 end vmatrix U takij formi formula Kramera spravedliva bez pripushennya sho D displaystyle Delta ne rivne nulyu ne treba navit abi koeficiyenti sistemi buli elementami cilisnogo kilcya viznachnik sistemi navit mozhe buti dilnikom nulya u kilci koeficiyentiv Takozh mozhna vvazhati sho abo nabori b 1 b 2 b n displaystyle b 1 b 2 dots b n ta x 1 x 2 x n displaystyle x 1 x 2 dots x n abo nabir c 1 c 2 c n displaystyle c 1 c 2 dots c n skladayutsya ne z elementiv kilcya koeficiyentiv sistemi a deyakogo modulya nad cim kilcem V takomu viglyadi formula Kramera vikoristovuyetsya napriklad pri dovedenni formuli dlya viznachnika Grama i Lemi Nakayami Bilsh zagalna versiya pravila Kramera rozglyadaye matrichne rivnyannya A X B displaystyle A boldsymbol X boldsymbol B de A displaystyle A n n displaystyle n times n matricya z nenulovim viznachnikom a X displaystyle boldsymbol X B displaystyle boldsymbol B n m displaystyle n times m matrici Rozglyanemo poslidovnosti 1 i 1 lt i 2 lt lt i k n displaystyle 1 leq i 1 lt i 2 lt cdots lt i k leq n ta 1 j 1 lt j 2 lt lt j k m displaystyle 1 leq j 1 lt j 2 lt cdots lt j k leq m Nehaj X I J displaystyle X I J k k displaystyle k times k pidmatricya X displaystyle X z ryadkami I i 1 i k displaystyle I i 1 dots i k ta stovpcyami J j 1 j k displaystyle J j 1 dots j k A B I J displaystyle A B I J n n displaystyle n times n matricya utvorena zaminoyu i s displaystyle i s stovpcya matrici A displaystyle A na j s displaystyle j s stovpec matrici B displaystyle B dlya vsih s 1 k displaystyle s 1 dots k Todi det X I J det A B I J det A displaystyle det X I J frac det A B I J det A U vipadku k 1 displaystyle k 1 ce zvoditsya do zvichajnogo pravila Kramera Metod spravedlivij dlya sistem rivnyan z koeficiyentami ta nevidomimi nad bud yakim polem a ne lishe u vipadku dijsnih chisel DovedennyaDovedennya pravila Kramera vikoristovuye taki vlastivosti viznachnika linijnist vidnosno bud yakogo fiksovanogo stovpcya i toj fakt sho viznachnik dorivnyuye nulyu koli dva stovpci rivni ce viplivaye iz vlastivosti sho znak viznachnika zminyuyetsya na protilezhnij yaksho perestaviti dva stovpci Zafiksuyemo j displaystyle j j stovpec Linijnist oznachaye nastupne yaksho rozglyadayemo lishe stovpec j displaystyle j yak zminnu fiksuyuchi inshi dovilno otrimana funkciya R n R displaystyle mathbb R n rightarrow mathbb R vvazhayemo elementi matrici dijsnimi chislami mozhe buti zadana matriceyu z odnim ryadkom i n displaystyle n stovpcyami sho diye na j displaystyle j j stovpec Naspravdi ce same te sho j teorema Laplasa zapisuyuchi det A C 1 a 1 j C n a n j displaystyle det A C 1 a 1 j dots C n a n j dlya pevnih koeficiyentiv C 1 C n displaystyle C 1 dots C n yaki zalezhat vid stovpciv matrici A displaystyle A vidminnih vid stovpcya j displaystyle j tochnij viglyad dlya cih minoriv tut nevazhlivij Todi znachennya det A displaystyle det A ye rezultatom zastosuvannya odnoryadkovoyi matrici L j C 1 C 2 C n displaystyle L j C 1 quad C 2 quad cdots quad C n do stovpcya j displaystyle j matrici A displaystyle A Yaksho L j displaystyle L j zastosovano do bud yakogo inshogo stovpcya k displaystyle k matrici A displaystyle A to rezultatom ye viznachnik matrici otrimanoyi z matrici A displaystyle A zaminoyu stovpcya j displaystyle j na kopiyu stovpcya k displaystyle k tomu otrimanij viznachnik dorivnyuye 0 displaystyle 0 vipadok dvoh rivnih stovpciv Teper rozglyanemo sistemu n displaystyle n linijnih rivnyan z n displaystyle n nevidomimi x 1 x n displaystyle x 1 dots x n matriceyu koeficiyentiv yakoyi ye A displaystyle A z nenulovim viznachnikom det A displaystyle det A a 11 x 1 a 12 x 2 a 1 n x n b 1 a 21 x 1 a 22 x 2 a 2 n x n b 2 a n 1 x 1 a n 2 x 2 a n n x n b n displaystyle begin matrix a 11 x 1 a 12 x 2 cdots a 1n x n amp amp b 1 1ex a 21 x 1 a 22 x 2 cdots a 2n x n amp amp b 2 1ex amp vdots amp 1ex a n1 x 1 a n2 x 2 cdots a nn x n amp amp b n end matrix Yaksho ob yednati ci rivnyannya vzyavshi C 1 displaystyle C 1 pomnozhene na pershe rivnyannya dodati C 2 displaystyle C 2 pomnozhene na druge i tak dali poki C n displaystyle C n domnozhitsya na ostannye rivnyannya to koeficiyent pri x j displaystyle x j bude dorivnyuvati C 1 a 1 j C n a n j det A displaystyle C 1 a 1 j cdots C n a n j det A todi yak koeficiyenti pri vsih inshih nevidomih stayut nulyami liva chastina nabuvaye viglyadu det A x j displaystyle det A x j Prava chastina ce C 1 b 1 C n b n displaystyle C 1 b 1 cdots C n b n tobto L j displaystyle L j zastosovanij do vektora stovpcya b displaystyle boldsymbol b utvorenogo pravimi chastinami b i displaystyle b i Naspravdi te sho bulo zrobleno tut domnozhennya matrichnogo rivnyannya A x b displaystyle A boldsymbol x boldsymbol b zliva na L j displaystyle L j Podilivshi na nenulove chislo det A displaystyle det A znahodimo nastupne rivnyannya sho zadovolnyaye sistemu x j L j b det A displaystyle x j frac L j cdot boldsymbol b det A Ale za pobudovoyu chiselnik ye viznachnikom matrici otrimanoyi z matrici A displaystyle A zaminoyu stovpcya j displaystyle j na b displaystyle boldsymbol b tomu otrimuyemo viraz dlya pravila Kramera yak neobhidnu umovu rozv yazku Cyu samu proceduru treba povtoriti dlya reshti j displaystyle j shob znajti znachennya inshih nevidomih Zalishayetsya dovesti sho ci znachennya dlya nevidomih yedini ta dijsno razom utvoryuyut rozv yazok sistemi Ale yaksho matricya A displaystyle A nevirodzhena z obernenoyu matriceyu A 1 displaystyle A 1 to x A 1 b displaystyle boldsymbol x A 1 boldsymbol b bude rozv yazkom sho j dovodit jogo isnuvannya Pokazhemo sho matricya A displaystyle A maye obernenu yaksho det A displaystyle det A nenulovij Rozglyanemo n n displaystyle n times n matricyu M displaystyle M otrimanu shlyahom skladannya odna nad odnoyu odnoryadkovih matric L j displaystyle L j pri j 1 n displaystyle j 1 dots n ce daye priyednanu matricyu dlya matrici A displaystyle A Bulo pokazano sho L j A 0 0 det A 0 0 displaystyle L j A 0 quad dots quad 0 quad det A quad 0 quad dots quad 0 de det A displaystyle det A z yavlyayetsya na poziciyi j displaystyle j z cogo viplivaye sho M A det A I n displaystyle MA det A I n Otzhe 1 det A M A 1 displaystyle frac 1 det A M A 1 sho i zavershuye dovedennya Inshi dovedennya div nizhche PrikladSistema linijnih rivnyan a 11 x 1 a 12 x 2 a 13 x 3 b 1 a 21 x 1 a 22 x 2 a 23 x 3 b 2 a 31 x 1 a 32 x 2 a 33 x 3 b 3 displaystyle begin cases a 11 x 1 a 12 x 2 a 13 x 3 b 1 a 21 x 1 a 22 x 2 a 23 x 3 b 2 a 31 x 1 a 32 x 2 a 33 x 3 b 3 end cases Viznachniki D a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 D 1 b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 D 2 a 11 b 1 a 13 a 21 b 2 a 23 a 31 b 3 a 33 D 3 a 11 a 12 b 1 a 21 a 22 b 2 a 31 a 32 b 3 displaystyle Delta begin vmatrix a 11 amp a 12 amp a 13 a 21 amp a 22 amp a 23 a 31 amp a 32 amp a 33 end vmatrix Delta 1 begin vmatrix b 1 amp a 12 amp a 13 b 2 amp a 22 amp a 23 b 3 amp a 32 amp a 33 end vmatrix Delta 2 begin vmatrix a 11 amp b 1 amp a 13 a 21 amp b 2 amp a 23 a 31 amp b 3 amp a 33 end vmatrix Delta 3 begin vmatrix a 11 amp a 12 amp b 1 a 21 amp a 22 amp b 2 a 31 amp a 32 amp b 3 end vmatrix Rozv yazok x 1 D 1 D x 2 D 2 D x 3 D 3 D displaystyle x 1 frac Delta 1 Delta x 2 frac Delta 2 Delta x 3 frac Delta 3 Delta Priklad 2 x 1 5 x 2 4 x 3 30 x 1 3 x 2 2 x 3 150 2 x 1 10 x 2 9 x 3 110 displaystyle begin cases 2x 1 5x 2 4x 3 30 x 1 3x 2 2x 3 150 2x 1 10x 2 9x 3 110 end cases Viznachniki D 2 5 4 1 3 2 2 10 9 5 D 1 30 5 4 150 3 2 110 10 9 760 D 2 2 30 4 1 150 2 2 110 9 1350 D 3 2 5 30 1 3 150 2 10 110 1270 displaystyle Delta begin vmatrix 2 amp 5 amp 4 1 amp 3 amp 2 2 amp 10 amp 9 end vmatrix 5 Delta 1 begin vmatrix 30 amp 5 amp 4 150 amp 3 amp 2 110 amp 10 amp 9 end vmatrix 760 Delta 2 begin vmatrix 2 amp 30 amp 4 1 amp 150 amp 2 2 amp 110 amp 9 end vmatrix 1350 Delta 3 begin vmatrix 2 amp 5 amp 30 1 amp 3 amp 150 2 amp 10 amp 110 end vmatrix 1270 x 1 760 5 152 x 2 1350 5 270 x 3 1270 5 254 displaystyle x 1 frac 760 5 152 x 2 frac 1350 5 270 x 3 frac 1270 5 254 Znahodzhennya obernenoyi matriciDokladnishe Nevirodzhena matricya Metodi obernennya matrici Nehaj A displaystyle A n n displaystyle n times n matricya z elementami v poli F displaystyle mathbb F Todi A adj A adj A A det A I displaystyle A operatorname adj A operatorname adj A A det A I de adj A displaystyle operatorname adj A priyednana matricya det A displaystyle det A viznachnik matrici A displaystyle A a I displaystyle I odinichna matricya Yaksho viznachnik det A displaystyle det A nenulovij to obernenoyu do A displaystyle A ye matricya A 1 1 det A adj A displaystyle A 1 frac 1 det A operatorname adj A Ce daye formulu dlya obernenoyi do A displaystyle A matrici za umovi sho det A 0 displaystyle det A neq 0 Naspravdi cya formula pracyuye koli F displaystyle mathbb F ye komutativnim kilcem za umovi sho det A displaystyle det A ye odiniceyu kilcya Yaksho det A displaystyle det A ne ye odiniceyu to A displaystyle A ne maye obernenoyi nad kilcem vona mozhe mati obernenu nad bilshim kilcem v yakomu deyaki ne odinichni elementi polya F displaystyle mathbb F mozhut mati oberneni ZastosuvannyaYavni formuli dlya n 2 ta n 3 Rozglyanemo linijnu sistemu a 1 x b 1 y c 1 a 2 x b 2 y c 2 displaystyle begin cases a 1 x b 1 y color red c 1 a 2 x b 2 y color red c 2 end cases yaka u matrichnij formi maye viglyad a 1 b 1 a 2 b 2 x y c 1 c 2 displaystyle begin bmatrix a 1 amp b 1 a 2 amp b 2 end bmatrix begin bmatrix x y end bmatrix begin bmatrix color red c 1 color red c 2 end bmatrix Nehaj znachennya a 1 b 2 b 1 a 2 displaystyle a 1 b 2 b 1 a 2 nenulove Todi za dopomogoyu viznachnikiv x displaystyle x i y displaystyle y mozhut buti znajdeni za pravilom Kramera yak x c 1 b 1 c 2 b 2 a 1 b 1 a 2 b 2 c 1 b 2 b 1 c 2 a 1 b 2 b 1 a 2 y a 1 c 1 a 2 c 2 a 1 b 1 a 2 b 2 a 1 c 2 c 1 a 2 a 1 b 2 b 1 a 2 displaystyle begin aligned x amp frac begin vmatrix color red c 1 amp b 1 color red c 2 amp b 2 end vmatrix begin vmatrix a 1 amp b 1 a 2 amp b 2 end vmatrix frac color red c 1 b 2 b 1 color red c 2 a 1 b 2 b 1 a 2 quad y frac begin vmatrix a 1 amp color red c 1 a 2 amp color red c 2 end vmatrix begin vmatrix a 1 amp b 1 a 2 amp b 2 end vmatrix frac a 1 color red c 2 color red c 1 a 2 a 1 b 2 b 1 a 2 end aligned Pravila dlya matric 3 3 displaystyle 3 times 3 analogichni Rozglyanemo sistemu a 1 x b 1 y c 1 z d 1 a 2 x b 2 y c 2 z d 2 a 3 x b 3 y c 3 z d 3 displaystyle begin cases begin matrix a 1 x b 1 y c 1 z amp color red d 1 a 2 x b 2 y c 2 z amp color red d 2 a 3 x b 3 y c 3 z amp color red d 3 end matrix end cases yaka u matrichnij formi maye viglyad a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 x y z d 1 d 2 d 3 displaystyle begin bmatrix a 1 amp b 1 amp c 1 a 2 amp b 2 amp c 2 a 3 amp b 3 amp c 3 end bmatrix begin bmatrix x y z end bmatrix begin bmatrix color red d 1 color red d 2 color red d 3 end bmatrix Todi znachennya x displaystyle x y displaystyle y ta z displaystyle z mozhna znajti nastupnim chinom x d 1 b 1 c 1 d 2 b 2 c 2 d 3 b 3 c 3 a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 y a 1 d 1 c 1 a 2 d 2 c 2 a 3 d 3 c 3 a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 displaystyle x frac begin vmatrix color red d 1 amp b 1 amp c 1 color red d 2 amp b 2 amp c 2 color red d 3 amp b 3 amp c 3 end vmatrix begin vmatrix a 1 amp b 1 amp c 1 a 2 amp b 2 amp c 2 a 3 amp b 3 amp c 3 end vmatrix quad y frac begin vmatrix a 1 amp color red d 1 amp c 1 a 2 amp color red d 2 amp c 2 a 3 amp color red d 3 amp c 3 end vmatrix begin vmatrix a 1 amp b 1 amp c 1 a 2 amp b 2 amp c 2 a 3 amp b 3 amp c 3 end vmatrix quad ta z a 1 b 1 d 1 a 2 b 2 d 2 a 3 b 3 d 3 a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 displaystyle quad z frac begin vmatrix a 1 amp b 1 amp color red d 1 a 2 amp b 2 amp color red d 2 a 3 amp b 3 amp color red d 3 end vmatrix begin vmatrix a 1 amp b 1 amp c 1 a 2 amp b 2 amp c 2 a 3 amp b 3 amp c 3 end vmatrix Diferencialna geometriya Chislennya Richchi Pravilo Kramera vikoristovuyetsya v en pri riznih rozrahunkah iz zaluchennyam simvoliv Kristofelya pershogo ta drugogo rodu Zokrema za pravilom Kramera mozhna dovesti sho operator divergenciyi na mnogovidi Rimana ye invariantnim vidnosno zamini koordinat Navodimo pryame dovedennya opuskayuchi rol simvoliv Kristofelya Nehaj M g displaystyle M g mnogovid Rimana z en x 1 x 2 x n displaystyle x 1 x 2 dots x n Nehaj A A i x i displaystyle A A i frac partial partial x i vektorne pole Vikoristovuyemo notaciyu Ejnshtejna dlya pidsumovuvannya Teorema Divergenciya vektornogo polya A displaystyle A div A 1 det g x i A i det g displaystyle operatorname div A frac 1 sqrt det g frac partial partial x i left A i sqrt det g right dd ye invariantnoyu pri zamini koordinat Dovedennya Nehaj x 1 x 2 x n x 1 x n displaystyle x 1 x 2 dots x n mapsto bar x 1 dots bar x n ye koordinatnim peretvorennyam z nevirodzhenoyu matriceyu Yakobi Todi vidpovidno do klasichnih en mayemo sho A A k x k displaystyle A bar A k frac partial partial bar x k de A k x k x j A j displaystyle bar A k frac partial bar x k partial x j A j Analogichno yaksho g g m k d x m d x k g i j d x i d x j displaystyle g g mk rm d x m otimes rm d x k bar g ij rm d bar x i otimes rm d bar x j to g i j x m x i x k x j g m k displaystyle bar g ij frac partial x m partial bar x i frac partial x k partial bar x j g mk Zapis cogo peretvorennya za dopomogoyu matric maye viglyad g x x T g x x displaystyle bar g left frac partial x partial bar x right text T g left frac partial x partial bar x right zvidki viplivaye sho det g det x x 2 det g displaystyle det bar g left det left frac partial x partial bar x right right 2 det g Teper obchislyuyemo div A 1 det g x i A i det g det x x 1 det g x k x i x k x i x ℓ A ℓ det x x 1 det g displaystyle begin aligned operatorname div A amp frac 1 sqrt det g frac partial partial x i left A i sqrt det g right 1ex amp det left frac partial x partial bar x right frac 1 sqrt det bar g frac partial bar x k partial x i frac partial partial bar x k left frac partial x i partial bar x ell bar A ell det left frac partial x partial bar x right 1 sqrt det bar g right end aligned Shob prodemonstruvati sho ce dorivnyuye 1 det g x k A k det g displaystyle frac 1 sqrt det bar g frac partial partial bar x k left bar A k sqrt det bar g right neobhidno i dostatno pokazati sho x k x i x k x i x ℓ det x x 1 0 displaystyle frac partial bar x k partial x i frac partial partial bar x k left frac partial x i partial bar x ell det left frac partial x partial bar x right 1 right 0 qquad dlya vsih ℓ displaystyle ell sho ekvivalentno x ℓ det x x det x x x k x i 2 x i x k x ℓ displaystyle frac partial partial bar x ell det left frac partial x partial bar x right det left frac partial x partial bar x right frac partial bar x k partial x i frac partial 2 x i partial bar x k partial bar x ell Prodiferenciyuvavshi livu chastinu otrimuyemo x ℓ det x x 1 i j 2 x i x ℓ x j det M i j 2 x i x ℓ x j det x x 1 i j det x x det M i j displaystyle begin aligned frac partial partial bar x ell det left frac partial x partial bar x right amp 1 i j frac partial 2 x i partial bar x ell partial bar x j det M i j 1ex amp frac partial 2 x i partial bar x ell partial bar x j det left frac partial x partial bar x right frac 1 i j det left frac partial x partial bar x right det M i j ast end aligned de M i j displaystyle M i j poznachaye matricyu otrimanu z x x displaystyle left dfrac partial x partial bar x right pislya vidalennya i displaystyle i go ryadka i j displaystyle j go stovpcya Ale za pravilom Kramera 1 i j det x x det M i j displaystyle frac 1 i j det left frac partial x partial bar x right det M i j ye j i displaystyle j i m elementom matrici x x displaystyle left frac partial bar x partial x right Takim chinom det x x 2 x i x ℓ x j x j x i displaystyle begin aligned ast det left frac partial x partial bar x right frac partial 2 x i partial bar x ell partial bar x j frac partial bar x j partial x i end aligned sho i zavershuye dovedennya Obchislennya neyavnih pohidnih Rozglyanemo dva rivnyannya F x y u v 0 displaystyle F x y u v 0 ta G x y u v 0 displaystyle G x y u v 0 Yaksho u displaystyle u i v displaystyle v ye nezalezhnimi zminnimi to mozhemo viznachiti x X u v displaystyle x X u v ta y Y u v displaystyle y Y u v Viraz dlya x u displaystyle dfrac partial x partial u mozhna znajti zastosuvavshi pravilo Kramera Obchislennya x u displaystyle dfrac partial x partial u Spochatku obchislimo pershi pohidni vid F displaystyle F G displaystyle G x displaystyle x ta y displaystyle y d F F x d x F y d y F u d u F v d v 0 d G G x d x G y d y G u d u G v d v 0 d x X u d u X v d v d y Y u d u Y v d v displaystyle begin aligned rm d F amp frac partial F partial x rm d x frac partial F partial y rm d y frac partial F partial u rm d u frac partial F partial v rm d v 0 rm d G amp frac partial G partial x rm d x frac partial G partial y rm d y frac partial G partial u rm d u frac partial G partial v rm d v 0 rm d x amp frac partial X partial u rm d u frac partial X partial v rm d v rm d y amp frac partial Y partial u rm d u frac partial Y partial v rm d v end aligned Pidstavivshi d x displaystyle rm d x d y displaystyle rm d y v d F displaystyle rm d F i d G displaystyle rm d G otrimayemo d F F x x u F y y u F u d u F x x v F y y v F v d v 0 d G G x x u G y y u G u d u G x x v G y y v G v d v 0 displaystyle begin aligned rm d F amp left frac partial F partial x frac partial x partial u frac partial F partial y frac partial y partial u frac partial F partial u right rm d u left frac partial F partial x frac partial x partial v frac partial F partial y frac partial y partial v frac partial F partial v right rm d v 0 rm d G amp left frac partial G partial x frac partial x partial u frac partial G partial y frac partial y partial u frac partial G partial u right rm d u left frac partial G partial x frac partial x partial v frac partial G partial y frac partial y partial v frac partial G partial v right rm d v 0 end aligned Oskilki u displaystyle u v displaystyle v nezalezhni zminni to koeficiyenti pri d u displaystyle rm d u ta d v displaystyle rm d v povinni buti nulovimi Otzhe mozhemo zapisati rivnyannya dlya koeficiyentiv F x x u F y y u F u G x x u G y y u G u F x x v F y y v F v G x x v G y y v G v displaystyle begin aligned frac partial F partial x frac partial x partial u frac partial F partial y frac partial y partial u amp frac partial F partial u frac partial G partial x frac partial x partial u frac partial G partial y frac partial y partial u amp frac partial G partial u frac partial F partial x frac partial x partial v frac partial F partial y frac partial y partial v amp frac partial F partial v frac partial G partial x frac partial x partial v frac partial G partial y frac partial y partial v amp frac partial G partial v end aligned Teper za pravilom Kramera bachimo sho x u F u F y G u G y F x F y G x G y displaystyle frac partial x partial u frac begin vmatrix frac partial F partial u amp frac partial F partial y 1ex frac partial G partial u amp frac partial G partial y end vmatrix begin vmatrix frac partial F partial x amp frac partial F partial y 1ex frac partial G partial x amp frac partial G partial y end vmatrix Tobto ce formula u terminah dvoh Yakobianiv x u F G u y F G x y displaystyle frac partial x partial u frac left frac partial F G partial u y right left frac partial F G partial x y right Analogichni formuli mozhna otrimati dlya x v displaystyle frac partial x partial v y u displaystyle frac partial y partial u y v displaystyle frac partial y partial v Cilochiselne programuvannya Pravilo Kramera mozhe buti vikoristane dlya dovedennya sho zadacha cilochiselnogo programuvannya matricya obmezhen yakoyi ye unimodulyarnoyu matriceyu a pravoyu chastinoyu ye cile chislo maye cilochiselni bazisni rozv yazki Ce znachno sproshuye rozv yazannya cilochiselnoyi programi Zvichajni diferencialni rivnyannya Pravilo Kramera vikoristovuyetsya dlya vivedennya zagalnogo rozv yazku neodnoridnogo linijnogo diferencialnogo rivnyannya metodom variaciyi parametriv metod variaciyi dovilnih stalih Geometrichna interpretaciyaGeometrichna interpretaciya pravila Kramera Ploshi drugogo ta tretogo zashtrihovanih paralelogramiv odnakovi a plosha drugogo dorivnyuye ploshi pershogo domnozhenij na x 1 displaystyle x 1 Z ciyeyi rivnosti viplivaye pravilo Kramera Pravilo Kramera maye geometrichnu interpretaciyu yaku takozh mozhna rozglyadati yak dovedennya abo dlya rozuminnya jogo geometrichnogo zmistu Ci geometrichni argumenti pracyuyut zagalom a ne lishe u vipadku dvoh rivnyan iz dvoma nevidomimi sho predstavlenij tut Zadanu sistemu rivnyan a 11 x 1 a 12 x 2 b 1 a 21 x 1 a 22 x 2 b 2 displaystyle begin cases begin matrix a 11 x 1 a 12 x 2 amp b 1 a 21 x 1 a 22 x 2 amp b 2 end matrix end cases mozhna rozglyadati yak rivnyannya mizh vektorami x 1 a 11 a 21 x 2 a 12 a 22 b 1 b 2 displaystyle x 1 left begin matrix a 11 a 21 end matrix right x 2 left begin matrix a 12 a 22 end matrix right left begin matrix b 1 b 2 end matrix right Plosha paralelograma viznachenogo vektorami a 11 a 21 displaystyle left begin matrix a 11 a 21 end matrix right i a 12 a 22 displaystyle left begin matrix a 12 a 22 end matrix right zadayetsya viznachnikom sistemi rivnyan a 11 a 12 a 21 a 22 displaystyle begin vmatrix a 11 amp a 12 1ex a 21 amp a 22 end vmatrix U zagalnomu vipadku koli ye bilshe zminnih ta rivnyan viznachnik z n displaystyle n vektoriv dovzhini n displaystyle n ce ob yem paralelepipeda sho pobudovanij na cih vektorah v n displaystyle n vimirnomu evklidovomu prostori Otzhe plosha paralelograma viznachenogo x 1 a 11 a 21 displaystyle x 1 left begin matrix a 11 a 21 end matrix right i a 12 a 22 displaystyle left begin matrix a 12 a 22 end matrix right dorivnyuye x 1 displaystyle x 1 pomnozheno na ploshu pershogo oskilki odnu zi storin pomnozhili na cej koeficiyent Teper ostannij paralelogram za principom Kavalyeri maye tu zh ploshu sho i paralelogram viznachenij cherez b 1 b 2 x 1 a 11 a 21 x 2 a 12 a 22 displaystyle left begin matrix b 1 b 2 end matrix right x 1 left begin matrix a 11 a 21 end matrix right x 2 left begin matrix a 12 a 22 end matrix right quad ta a 12 a 22 displaystyle quad left begin matrix a 12 a 22 end matrix right Pririvnyuvannya plosh ostannogo ta drugogo paralelograma daye rivnyannya b 1 a 12 b 2 a 22 a 11 x 1 a 12 a 21 x 1 a 22 x 1 a 11 a 12 a 21 a 22 displaystyle begin vmatrix b 1 amp a 12 1ex b 2 amp a 22 end vmatrix begin vmatrix a 11 x 1 amp a 12 1ex a 21 x 1 amp a 22 end vmatrix x 1 begin vmatrix a 11 amp a 12 1ex a 21 amp a 22 end vmatrix z yakogo viplivaye pravilo Kramera Inshi dovedennya