Плитки Вана (або доміно Вана), вперше запропоновані математиком, логіком і філософом [ru] в 1961, — це клас формальних систем. Вони моделюються візуально за допомогою квадратних плиток з розфарбуванням кожного боку. Визначається набір таких плиток (наприклад, як на ілюстрації), потім копії цих плиток прикладаються одна до одної з умовою узгодження кольорів сторін, але без обертання або симетричного відображення плиток.
Основне питання про набір плиток Вана — чи можуть вони замостити площину чи ні, тобто чи можна площину заповнити таким способом. Наступне питання, чи можна її заповнити у вигляді періодичного візерунка.
Задача доміно
В 1961 році Ван висловив гіпотезу, що якщо скінченне число плиток Вана може замостити площину, то існує періодичне замощення, тобто мозаїка, інваріантна відносно паралельного перенесення на вектор у двовивимірній решітці на зразок шпалер. Він також зауважив, що ця гіпотеза має наслідком існування алгоритму, що визначає, чи може даний скінченний набір плиток Вана замостити площину. Ідея обмеження з'єднання суміжних плиток виникла в грі доміно, так що плитки Вана відомі також під назвою доміно Вана, а алгоритмічна задача визначення, чи можуть плитки замостити площину, здобула популярність як задача доміно.
За словами студента Вана [en] ,
Задача доміно має справу з класом усіх наборів доміно. Задача полягає у визначенні для кожного набору доміно, можливе чи ні замощення. Ми говоримо, що задачу доміно розв'язна або нерозв'язна, залежно від того, існує чи ні алгоритм, який за заданим набором довільного набору доміно визначає, можна розв'язати чи ні задачу замощення для цього набору.
Іншими словами, в задачі доміно запитується, чи існує ефективний метод, який правильно розв'язує задачу для заданих наборів доміно.
1966 року Бергер розв'язав задачу доміно, спростувавши гіпотезу Вана. Він довів, що не може існувати алгоритму, показавши, як перетворити будь-яку машину Тюрінга на набір плиток Вана, так що плитки замощують площину тоді й лише тоді, коли машина Тюрінга не зупиняється. З неможливості розв'язати проблему зупинки (завдання перевірки, чи зупиниться, зрештою, машина Тюрінга) тоді випливає неможливість розв'язати задачу замощення Вана.
Апериодичні набори плиток
Комбінація результату Бергера зі спостереженням Вана показує, що повинен існувати скінченний набір плиток Вана, які замощують площину, але лише неперіодично. Цю властивість має мозаїка Пенроуза і розташування атомів у квазікристалі. Хоча оригінальний набір Бергера містив 20 426 плиток, він припустив, що менші набори можуть також існувати, зокрема підмножини його оригінального набору, та в опублікованих тезах його дисертації він скоротив число плиток до 104. Пізніше знайдено ще менші набори. Наприклад, набір з 11 плиток і 4 кольорів, наведений вище, є неперіодичним набором, і його відкрили Еммануель Жандель і Майкл Рао в 2015 році, використовуючи повний перебір для доведення того, що 10 плиток або 3 кольорів недостатньо для аперіодичності.
Узагальнення
Плитки Вана можна узагальнити різними способами й усі вони також нерозв'язні у вищенаведеному розумінні. Наприклад, куби Вана — це куби однакового розміру з розфарбованими гранями, які мають поєднуватися за кольором при створенні багатогранних замощень (стільників). Кулик і Карі показали неперіодичні набори кубів Вана. Вінфрі та ін. показали можливість створення молекулярних «плиток» на основі ДНК (дезоксирибонуклеїнової кислоти), які можуть діяти на зразок плиток Вана. Міттал і ін. показали, що з цих плиток можна скласти пептидо-нуклеїнові кислоти (ПНК), стійкі штучні подоби ДНК.
Застосування
Плитки Вана нещодавно стали популярним засобом створення алгоритмічних текстур, полів висот та інших великих неповторюваних двовимірних наборів даних. Невелике число заздалегідь обчислених або створених вручну плиток можна зібрати швидко і дешево без очевидних повторень та періодичності. В цьому випадку звичайні неперіодичні мозаїки показали б свою структуру. Набори зі значно меншими обмеженнями, які забезпечують вибір щонайменше двох варіантів для будь-яких двох кольорів сторін, більш прийнятні, оскільки замощуваність легко забезпечується і кожну плитку можна обрати псевдовипадково. Плитки Вана використовуються також під час перевірки розв'язності теорії клітинних автоматів.
В культурі
Коротке оповідання Грега Ігена «Килим Вана», згодом розширене до роману [en], розповідає про всесвіт, заповнений організмами і мислячими істотами у вигляді плиток Вана, утвореними візерунками складних молекул.
Див. також
- [en]
- [en]
- [en]
- [en]
Примітки
- Wang, 1961, с. 1–41.
- Wang, 1965, с. 98–106.
- Renz, 1981, с. 83–103.
- Berger, 1966, с. 72.
- Robinson, 1971, с. 177–209.
- Culik, 1996, с. 245–251.
- Kari, 1996, с. 259–264.
- Jeandel, Emmanuel; Rao, Michael (2015), An aperiodic set of 11 Wang tiles, , arXiv:1506.06492. (Показано неперіодичний набір з 11 плиток з 4 кольорами)}
- Culik, Kari, 1995, с. 675–686.
- Winfree, Liu, Wenzler, Seeman, 1998, с. 539–544.
- Lukeman, Seeman, Mittal, 2002.
- Stam, 1997.
- Cohen, Shade, Hiller, Deussen, 2003, с. 287–294.
- Wei, 2004, с. 55–63.
- Kopf, Cohen-Or, Deussen, Lischinski, 2006, с. 509–518.
- Kari, 1990, с. 379–385.
- Burnham, 2014, с. 72–73.
Література
- Hao Wang. Proving theorems by pattern recognition—II // . — 1961. — Т. 40, вип. 1 (6 липня). — DOI: .. Ван вводить свої плитки і висловлює гіпотезу, що немає неперіодичних множин.
- Hao Wang. Games, logic and computers // Scientific American. — 1965. — Вип. November (6 липня). Представляє задачу доміно популярній аудиторії.
- Peter Renz. Mathematical proof: What it is and what it ought to be // The Two-Year College Mathematics Journal. — 1981. — Т. 12, вип. 2 (6 липня). — DOI: .
- Robert Berger. The undecidability of the domino problem // Memoirs of the American Mathematical Society. — 1966. — Т. 66 (6 липня). Бергер уводить поняття «плитки Вана» і демонструє першу неперіодичну множину на них.
- Raphael M. Robinson. Undecidability and nonperiodicity for tilings of the plane // Inventiones Mathematicae. — 1971. — Т. 12 (6 липня). — DOI: .
- Karel Culik. An aperiodic set of 13 Wang tiles // . — 1996. — Т. 160, вип. 1—3 (6 липня). — DOI: .
- Jarkko Kari. A small aperiodic set of Wang tiles // . — 1996. — Т. 160, вип. 1—3 (6 липня). — DOI: .
- Karel Culik, Jarkko Kari. An aperiodic set of Wang cubes // Journal of Universal Computer Science. — 1995. — Т. 1, вип. 10 (6 липня). — DOI: .
- E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman. Design and self-assembly of two-dimensional DNA crystals // Nature. — 1998. — Т. 394 (6 липня). — DOI: . — PMID 9707114 .
- P. Lukeman, N. Seeman, A. Mittal. 1st International Conference on Nanoscale/Molecular Mechanics (N-M2-I), Outrigger Wailea Resort, Maui, Hawaii. — 2002.
- Jos Stam. Aperiodic Texture Mapping. — 1997. — 6 липня.
- Michael F. Cohen, Jonathan Shade, Stefan Hiller, Oliver Deussen. ACM SIGGRAPH 2003. — New York, NY, USA : ACM, 2003. — . — DOI:. Випадкові мозаїки.
- Li-Yi Wei. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware (HWWS '04). — New York, NY, USA : ACM, 2004. — . — DOI:. Застосування плиток Вана для створення текстури в ГП.
- Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, Dani Lischinski. ACM SIGGRAPH 2006. — New York, NY, USA, 2006. — . — DOI:. Показує застосування.
- Jarkko Kari. Cellular automata: theory and experiment (Los Alamos, NM, 1989). — 1990. — Т. 45. — () — DOI:
- Karen Burnham. Greg Egan. — University of Illinois Press, 2014. — (Modern Masters of Science Fiction) — .
- Branko Grünbaum, G.C. Shephard. Tilings and Patterns. — New York : W. H. Freeman, 1987. — ..
Посилання
- Animated demonstration of a naïve Wang tiling method — вимагає Javascript і HTML5
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Plitki Vana abo domino Vana vpershe zaproponovani matematikom logikom i filosofom ru v 1961 ce klas formalnih sistem Voni modelyuyutsya vizualno za dopomogoyu kvadratnih plitok z rozfarbuvannyam kozhnogo boku Viznachayetsya nabir takih plitok napriklad yak na ilyustraciyi potim kopiyi cih plitok prikladayutsya odna do odnoyi z umovoyu uzgodzhennya koloriv storin ale bez obertannya abo simetrichnogo vidobrazhennya plitok Cej nabir z 11 plitok Vana mozhe zapovniti ploshinu tilki aperiodichno Priklad zamoshennya Vana 13 ma plitkami Osnovne pitannya pro nabir plitok Vana chi mozhut voni zamostiti ploshinu chi ni tobto chi mozhna ploshinu zapovniti takim sposobom Nastupne pitannya chi mozhna yiyi zapovniti u viglyadi periodichnogo vizerunka Zadacha dominoV 1961 roci Van visloviv gipotezu sho yaksho skinchenne chislo plitok Vana mozhe zamostiti ploshinu to isnuye periodichne zamoshennya tobto mozayika invariantna vidnosno paralelnogo perenesennya na vektor u dvovivimirnij reshitci na zrazok shpaler Vin takozh zauvazhiv sho cya gipoteza maye naslidkom isnuvannya algoritmu sho viznachaye chi mozhe danij skinchennij nabir plitok Vana zamostiti ploshinu Ideya obmezhennya z yednannya sumizhnih plitok vinikla v gri domino tak sho plitki Vana vidomi takozh pid nazvoyu domino Vana a algoritmichna zadacha viznachennya chi mozhut plitki zamostiti ploshinu zdobula populyarnist yak zadacha domino Za slovami studenta Vana en Zadacha domino maye spravu z klasom usih naboriv domino Zadacha polyagaye u viznachenni dlya kozhnogo naboru domino mozhlive chi ni zamoshennya Mi govorimo sho zadachu domino rozv yazna abo nerozv yazna zalezhno vid togo isnuye chi ni algoritm yakij za zadanim naborom dovilnogo naboru domino viznachaye mozhna rozv yazati chi ni zadachu zamoshennya dlya cogo naboru Inshimi slovami v zadachi domino zapituyetsya chi isnuye efektivnij metod yakij pravilno rozv yazuye zadachu dlya zadanih naboriv domino 1966 roku Berger rozv yazav zadachu domino sprostuvavshi gipotezu Vana Vin doviv sho ne mozhe isnuvati algoritmu pokazavshi yak peretvoriti bud yaku mashinu Tyuringa na nabir plitok Vana tak sho plitki zamoshuyut ploshinu todi j lishe todi koli mashina Tyuringa ne zupinyayetsya Z nemozhlivosti rozv yazati problemu zupinki zavdannya perevirki chi zupinitsya zreshtoyu mashina Tyuringa todi viplivaye nemozhlivist rozv yazati zadachu zamoshennya Vana Aperiodichni nabori plitokKombinaciya rezultatu Bergera zi sposterezhennyam Vana pokazuye sho povinen isnuvati skinchennij nabir plitok Vana yaki zamoshuyut ploshinu ale lishe neperiodichno Cyu vlastivist maye mozayika Penrouza i roztashuvannya atomiv u kvazikristali Hocha originalnij nabir Bergera mistiv 20 426 plitok vin pripustiv sho menshi nabori mozhut takozh isnuvati zokrema pidmnozhini jogo originalnogo naboru ta v opublikovanih tezah jogo disertaciyi vin skorotiv chislo plitok do 104 Piznishe znajdeno she menshi nabori Napriklad nabir z 11 plitok i 4 koloriv navedenij vishe ye neperiodichnim naborom i jogo vidkrili Emmanuel Zhandel i Majkl Rao v 2015 roci vikoristovuyuchi povnij perebir dlya dovedennya togo sho 10 plitok abo 3 koloriv nedostatno dlya aperiodichnosti UzagalnennyaPlitki Vana mozhna uzagalniti riznimi sposobami j usi voni takozh nerozv yazni u vishenavedenomu rozuminni Napriklad kubi Vana ce kubi odnakovogo rozmiru z rozfarbovanimi granyami yaki mayut poyednuvatisya za kolorom pri stvorenni bagatogrannih zamoshen stilnikiv Kulik i Kari pokazali neperiodichni nabori kubiv Vana Vinfri ta in pokazali mozhlivist stvorennya molekulyarnih plitok na osnovi DNK dezoksiribonukleyinovoyi kisloti yaki mozhut diyati na zrazok plitok Vana Mittal i in pokazali sho z cih plitok mozhna sklasti peptido nukleyinovi kisloti PNK stijki shtuchni podobi DNK ZastosuvannyaPlitki Vana neshodavno stali populyarnim zasobom stvorennya algoritmichnih tekstur poliv visot ta inshih velikih nepovtoryuvanih dvovimirnih naboriv danih Nevelike chislo zazdalegid obchislenih abo stvorenih vruchnu plitok mozhna zibrati shvidko i deshevo bez ochevidnih povtoren ta periodichnosti V comu vipadku zvichajni neperiodichni mozayiki pokazali b svoyu strukturu Nabori zi znachno menshimi obmezhennyami yaki zabezpechuyut vibir shonajmenshe dvoh variantiv dlya bud yakih dvoh koloriv storin bilsh prijnyatni oskilki zamoshuvanist legko zabezpechuyetsya i kozhnu plitku mozhna obrati psevdovipadkovo Plitki Vana vikoristovuyutsya takozh pid chas perevirki rozv yaznosti teoriyi klitinnih avtomativ V kulturiKorotke opovidannya Grega Igena Kilim Vana zgodom rozshirene do romanu en rozpovidaye pro vsesvit zapovnenij organizmami i mislyachimi istotami u viglyadi plitok Vana utvorenimi vizerunkami skladnih molekul Div takozh en en en en PrimitkiWang 1961 s 1 41 Wang 1965 s 98 106 Renz 1981 s 83 103 Berger 1966 s 72 Robinson 1971 s 177 209 Culik 1996 s 245 251 Kari 1996 s 259 264 Jeandel Emmanuel Rao Michael 2015 An aperiodic set of 11 Wang tiles arXiv 1506 06492 Pokazano neperiodichnij nabir z 11 plitok z 4 kolorami Culik Kari 1995 s 675 686 Winfree Liu Wenzler Seeman 1998 s 539 544 Lukeman Seeman Mittal 2002 Stam 1997 Cohen Shade Hiller Deussen 2003 s 287 294 Wei 2004 s 55 63 Kopf Cohen Or Deussen Lischinski 2006 s 509 518 Kari 1990 s 379 385 Burnham 2014 s 72 73 LiteraturaHao Wang Proving theorems by pattern recognition II 1961 T 40 vip 1 6 lipnya DOI 10 1002 j 1538 7305 1961 tb03975 x Van vvodit svoyi plitki i vislovlyuye gipotezu sho nemaye neperiodichnih mnozhin Hao Wang Games logic and computers Scientific American 1965 Vip November 6 lipnya Predstavlyaye zadachu domino populyarnij auditoriyi Peter Renz Mathematical proof What it is and what it ought to be The Two Year College Mathematics Journal 1981 T 12 vip 2 6 lipnya DOI 10 2307 3027370 Robert Berger The undecidability of the domino problem Memoirs of the American Mathematical Society 1966 T 66 6 lipnya Berger uvodit ponyattya plitki Vana i demonstruye pershu neperiodichnu mnozhinu na nih Raphael M Robinson Undecidability and nonperiodicity for tilings of the plane Inventiones Mathematicae 1971 T 12 6 lipnya DOI 10 1007 bf01418780 Karel Culik An aperiodic set of 13 Wang tiles 1996 T 160 vip 1 3 6 lipnya DOI 10 1016 S0012 365X 96 00118 5 Jarkko Kari A small aperiodic set of Wang tiles 1996 T 160 vip 1 3 6 lipnya DOI 10 1016 0012 365X 95 00120 L Karel Culik Jarkko Kari An aperiodic set of Wang cubes Journal of Universal Computer Science 1995 T 1 vip 10 6 lipnya DOI 10 1007 978 3 642 80350 5 57 E Winfree F Liu L A Wenzler N C Seeman Design and self assembly of two dimensional DNA crystals Nature 1998 T 394 6 lipnya DOI 10 1038 28998 PMID 9707114 P Lukeman N Seeman A Mittal 1st International Conference on Nanoscale Molecular Mechanics N M2 I Outrigger Wailea Resort Maui Hawaii 2002 Jos Stam Aperiodic Texture Mapping 1997 6 lipnya Michael F Cohen Jonathan Shade Stefan Hiller Oliver Deussen ACM SIGGRAPH 2003 New York NY USA ACM 2003 ISBN 1 58113 709 5 DOI 10 1145 1201775 882265 Vipadkovi mozayiki Li Yi Wei Proceedings of the ACM SIGGRAPH EUROGRAPHICS Conference on Graphics Hardware HWWS 04 New York NY USA ACM 2004 ISBN 3 905673 15 0 DOI 10 1145 1058129 1058138 Zastosuvannya plitok Vana dlya stvorennya teksturi v GP Johannes Kopf Daniel Cohen Or Oliver Deussen Dani Lischinski ACM SIGGRAPH 2006 New York NY USA 2006 ISBN 1 59593 364 6 DOI 10 1145 1179352 1141916 Pokazuye zastosuvannya Jarkko Kari Cellular automata theory and experiment Los Alamos NM 1989 1990 T 45 DOI 10 1016 0167 2789 90 90195 U Karen Burnham Greg Egan University of Illinois Press 2014 Modern Masters of Science Fiction ISBN 9780252096297 Branko Grunbaum G C Shephard Tilings and Patterns New York W H Freeman 1987 ISBN 0 7167 1193 1 PosilannyaAnimated demonstration of a naive Wang tiling method vimagaye Javascript i HTML5