Підтримка
www.wikidata.uk-ua.nina.az
Zadacha perevirki planarnosti ce algoritmichna zadacha perevirki chi ye danij graf planarnim tobto chi mozhna jogo namalyuvati na ploshini bez peretinu reber Zadachu dobre vivcheno v informatici i pridumano bagato praktichnih algoritmiv zokrema z vikoristannyam suchasnih struktur danih Bilshist cih metodiv pracyuyut za chas O n linijnij chas de n chislo reber abo vershin grafa sho ye en Zamist prostogo bulivskogo znachennya vihid algoritmiv perevirki planarnosti mozhe dati vkladennya grafa yaksho graf planarnij abo zavadu planarnosti taku yak pidgraf Kuratovskogo yaksho graf ne planarnij Kriteriyi planarnostiAlgoritmi perevirki planarnosti zazvichaj koristuyutsya teoremami teoriyi grafiv yaki opisuyut mnozhinu planarnih grafiv u terminah sho ne zalezhat vid malyuvannya grafiv Syudi vhodyat Teorema Pontryagina Kuratovskogo sho graf planarnij todi j lishe todi koli vin ne mistit pidgrafa yakij ye rozbittyam K5 povnogo grafa z p yatma vershinami abo K3 3 komunalnij graf povnij dvochastkovij graf z shistma vershinami tri z yakih z yednani z kozhnoyu vershinoyu z inshoyi trijki Teorema Vagnera sho graf planarnij todi j lishe todi koli vin ne mistit minora pidgrafa styaguvan izomorfnogo K5 abo K3 3 en sho opisuye planarni grafi v terminah uporyadkuvannya zliva napravo v derevi poshuku v glibinu Kriterij planarnosti de Frejseksa Rozenshtilya mozhna vikoristati pryamo yak chastinu algoritmu perevirki planarnosti todi yak teoremi Kuratovskogo i Vagnera zastosovuyut pobichno yaksho algoritm mozhe znajti kopiyu K5 abo K3 3 v danomu grafi mozhna buti vpevnenim sho vhidnij graf ne planarnij Ye j inshi kriteriyi planarnosti yaki opisuyut planarni grafi matematichno ale yaki mensh pridatni dlya algoritmiv perevirki planarnosti kriterij planarnosti Vitni sho graf planaren todi j lishe todi koli jogo en ye takozh kografovym kriterij planarnosti Maklejna sho opisuye planarni grafi bazisami yihnih ciklichnih prostoriv teorema Shnajdera sho opisuye planarni grafi en asocijovanih chastkovo vporyadkovanih mnozhin kriterij planarnosti Kolen de Verdyera sho vikoristovuye spektralnu teoriyu grafiv AlgoritmMetod dodavannya shlyahu Pershim opublikovanim 1974 algoritmom perevirki planarnosti buv klasichnij metod dodavannya shlyahu Gopkrofta i Tardzhana yakij pracyuvav za linijnij chas Implementaciyu algoritmu Gopkrofta i Tardzhana vklyucheno do en Melhorna en i Neera 2012 roku Tejlor rozshiriv cej algoritm dlya generuvannya vsih perestanovok ciklichnih poryadkiv reber dlya vkladennya dvozv yaznih komponent Metod dodavannya vershin Metodi dodavannya vershin polyagaye u stvorenni strukturi danih sho predstavlyaye mozhlivi vkladennya porodzhenogo pidgrafa danogo grafa i dodavannya vershin po odnij do ciyeyi strukturi danih Ci metodi pochinalisya z neefektivnogo O n2 metodu yakij 1967 roku zaproponuvali Lempel en i Cederbaum Metod pokrashili Iven i Tardzhan yaki znajshli rozv yazok linijnogo chasu dlya kroku s t numeraciyi a potim polipshili But i Lyuker yaki rozrobili strukturu danih PQ derevo Z cimi polipshennyami metod stav linijnim za chasom i praktichno stav pracyuvati shvidshe vid metodu dodavannya shlyahiv Cej metod takozh rozshireno shob efektivno obchislyuvati planarne vkladennya malyuvannya dlya planarnih grafiv 1999 roku Shi i Syu sprostili ci metodi vikoristovuyuchi PC derevo nekorenevij variant PQ dereva i obhid iz vidkladenoyu vibirkoyu dereva vershin z poshukom u glibinu Metod dodavannya reber 2004 roku Bojyer i Mirvold rozrobili sproshenij algoritm z chasom roboti O n naviyanij metodom PQ dereva ale v yakomu pozbulisya PQ dereva i algoritm vikoristovuye dodavannya reber dlya obchislennya planarnogo vkladennya yaksho vono mozhlive V inshomu vipadku obchislyuyetsya rozbittya Kuratovskogo abo grafa K5 abo grafa K3 3 Metod ye odnim z dvoh algoritmiv yaki isnuyut nini drugij algoritm perevirki planarnosti de Frejseksa de Mendesa i Rozenshtilya U statti Boyera Korteze Patrignami ta Battista opisano eksperimentalne porivnyannya z poperednoyu versiyeyu algoritmu perevirki planarnosti Boyera i Mirvolda Pri comu algoritm Boyera i Mirvolda rozshireno dlya vidilennya dekilkoh rozbittiv Kuratovskogo neplanarnogo vhidnogo grafa z chasom roboti linijno zalezhnim vid rozmiru vihodu Sirci perevirki planarnosti i vidilennya dekilkoh rozbittiv Kuratovskogo perebuvayut u vidkritomu dostupi movoyu C Algoritm sho viznachaye pidgraf Kuratovskogo za linijnij vid kilkosti vershin chas rozrobiv Vilyamson u 1980 h rokah Metod poslidovnoyi pobudovi Inshij metod vikoristovuye pobudovu za indukciyeyu 3 zv yaznih grafiv dlya poslidovnoyi pobudovi planarnogo vkladennya bud yakoyi 3 zv yaznoyi komponenti grafa G a tomu j planarnogo vkladennya samogo grafa G Pobudova pochinayetsya z K4 i viznachayetsya tak sho bud yakij promizhnij graf na shlyahu do povnoyi komponenti ye znovu 3 zv yaznim Oskilki taki grafi mayut yedine vkladennya z tochnistyu do viboru zovnishnoyi grani nastupnij bilshij graf yaksho vin zalishayetsya planarnim maye buti utochnennyam poperednogo grafa Ce dozvolyaye zvesti perevirku planarnosti do prosto perevirki chi bude nastupne dodane rebro mati obidva kinci na zovnishnij grani potochnogo vkladennya Popri konceptualnu prostotu i linijnij chas roboti metod maye veliku skladnistyu poshuku poslidovnosti pobudovi PrimitkiHopcroft Tarjan 1974 s 549 568 Mehlhorn Mutzel 1996 s 233 242 Mehlhorn Mutzel Naher 1993 Mehlhorn Naher 1995 s 96 102 Taylor 2012 Lempel Even Cederbaum 1967 s 215 232 Even Tarjan 1976 s 339 344 Boyer i Mirvold Boyer Myrvold 2004 Cya implementaciya v LEDA povilnisha nizh LEDA implementaciyi bagatoh inshih algoritmiv perevirki planarnosti z chasom O n Chiba Nishizeki Abe Ozawa 1985 s 54 76 Shih Hsu 1999 s 179 191 Boyer Myrvold 2004 s 241 273 de Fraysseix Ossona de Mendez Rosenstiehl 2006 s 1017 1030 Brandes 2009 Boyer Cortese Patrignani Battista 2003 s 25 36 Chimani Mutzel Schmidt 2008 s 159 170 OGDF Open Graph Drawing Framework start Boost Graph Library Boyer Myrvold Planarity Testing Embedding 1 40 0 Williamson 1984 s 681 693 Schmidt 2014 s 967 978 LiteraturaJohn Hopcroft Robert E Tarjan Efficient planarity testing 1974 T 21 vip 4 S 549 568 DOI 10 1145 321850 321852 Kurt Mehlhorn Petra Mutzel On the Embedding Phase of the Hopcroft and Tarjan Planarity Testing Algorithm Algorithmica 1996 T 16 S 233 242 DOI 10 1007 bf01940648 Kurt Mehlhorn Petra Mutzel Stefan Naher An Implementation of the Hopcroft and Tarjan Planarity Test and Embedding Algorithm 1993 Kurt Mehlhorn Stefan Naher LEDA A library of efficient data types and algorithms CACM 1995 T 38 vip 1 S 96 102 Martyn G Taylor Planarity Testing by Path Addition University of Kent 2012 Ph D Arhivovano z dzherela 2 bereznya 2014 Lempel A Even S Cederbaum I An algorithm for planarity testing of graphs Theory of Graphs New York Gordon and Breach 1967 S 215 232 Shimon Even Robert E Tarjan Computing an st numbering Theoretical Computer Science 1976 T 2 vip 3 S 339 344 DOI 10 1016 0304 3975 76 90086 4 Chiba N Nishizeki T Abe A Ozawa T A linear algorithm for embedding planar graphs using PQ trees Journal of Computer and Systems Sciences 1985 T 30 vip 1 S 54 76 DOI 10 1016 0022 0000 85 90004 2 Shih W K Hsu W L A new planarity test Theoretical Computer Science 1999 T 223 vip 1 2 S 179 191 DOI 10 1016 S0304 3975 98 00120 0 John M Boyer Wendy J Myrvold On the cutting edge simplified O n planarity by edge addition 2004 T 8 vip 3 S 241 273 DOI 10 7155 jgaa 00091 de Fraysseix H Ossona de Mendez P Rosenstiehl P Tremaux Trees and Planarity International Journal of Foundations of Computer Science 2006 T 17 vip 5 S 1017 1030 DOI 10 1142 S0129054106004248 Ulrik Brandes The left right planarity test 2009 Boyer J M Cortese P F Patrignani M Battista G D Stop minding your P s and Q s implementing a fast and simple DFS based planarity testing and embedding algorithm Proc 11th Int Symp Graph Drawing GD 03 Springer Verlag 2003 T 2912 S 25 36 Chimani M Mutzel P Schmidt J M Efficient extraction of multiple Kuratowski subdivisions Proc 15th Int Symp Graph Drawing GD 07 Sydney Australia Springer Verlag 2008 T 4875 S 159 170 Lecture Notes in Computer Science S G Williamson Depth First Search and Kuratowski Subgraphs Journal of the ACM 1984 T 31 S 681 693 DOI 10 1145 1634 322451 Jens M Schmidt The Mondshein Sequence Proceedings of the 41st International Colloquium on Automata Languages and Programming ICALP 14 2014 S 967 978 DOI 10 1007 978 3 662 43948 7 80
Топ