Підтримка
www.wikidata.uk-ua.nina.az
Mala teorema Ferma odne z osnovnih tverdzhen elementarnoyi teoriyi chisel Vpershe bula sformulovana v listi francuzkogo matematika P yera de Ferma do svogo druga en 18 zhovtnya 1640 roku V listi prote ne bulo navedeno dovedennya Pershe vidome dovedennya podane Lejbnicom u neopublikovanih rukopisah FormulyuvannyaMala teorema Ferma dopuskaye kilka ekvivalentnih formulyuvan Nehaj p displaystyle p proste a displaystyle a cile sho ne dilitsya na p displaystyle p Todi a p 1 1 mod p displaystyle a p 1 equiv 1 pmod p Ekvivalentnim ye nastupne tverdzhennya Nehaj p displaystyle p proste a displaystyle a dovilne cile chislo Todi a p a 0 mod p displaystyle a p a equiv 0 pmod p Uzagalnennya 1 Ejlerom bulo dovedeno sho dlya dovilnogo a displaystyle a vzayemno prostogo z m gt 1 displaystyle m gt 1 vikonuyetsya nastupne a f m 1 mod m displaystyle a varphi left m right equiv 1 pmod m de f m displaystyle varphi left m right funkciya Ejlera Uzagalnennya 2 Rivnist x q x displaystyle x q x spravedliva dlya vsih elementiv x displaystyle x skinchennogo polya k q displaystyle k q utvorenogo q displaystyle q elementami DovedennyaDovedennya 1 za metodom matematichnoyi indukciyi Poznachimo yak zvichno p k p p 1 p 2 p k 1 k displaystyle p choose k frac p p 1 p 2 cdots p k 1 k binomialnij koeficiyent Todi dlya prostogo p displaystyle p i 0 lt k lt p displaystyle 0 lt k lt p mayemo sho p k displaystyle p choose k dilitsya na p displaystyle p Spravdi mozhna zapisati p k p m k displaystyle p choose k frac pm k quad quad de m p 1 p 2 p k 1 displaystyle quad quad m p 1 p 2 cdots p k 1 Oskilki p displaystyle p i k displaystyle k ye vzayemno prostimi to ochevidno sho k displaystyle k dilit m displaystyle m i yak naslidok p k displaystyle p choose k dilitsya na p displaystyle p Tverdzhennya Maloyi teoremi Ferma dovoditimemo metodom matematichnoyi indukciyi Teorema ochevidno spravedliva dlya a 1 displaystyle a 1 Pripustimo sho vona spravdzhuyetsya dlya pevnogo cilogo a displaystyle a Zgidno z formuloyu binoma Nyutona vikoristovuyuchi ranishe dovedene i pripushennya indukciyi oderzhuyemo a 1 p a p a 0 k 1 p 1 p k a k a p 1 a 1 mod p displaystyle a 1 p equiv a p a 0 sum k 1 p 1 p choose k a k equiv a p 1 equiv a 1 pmod p tobto a 1 p a 1 0 mod p displaystyle a 1 p a 1 equiv 0 pmod p sho dovodit tverdzhennya dlya dodatnih cilih Dlya vid yemnih dovedennya analogichne Dovedennya 2 vikoristovuyuchi lishki Pripustimo sho a displaystyle a dodatne chislo sho ne dilitsya na p displaystyle p Yaksho zapisati a 2 a 3 a p 1 a displaystyle a 2a 3a ldots p 1 a quad quad i obrahuvati oderzhanu poslidovnist za modulem p displaystyle p to mi otrimayemo deyaku perestanovku chisel 1 2 3 p 1 displaystyle 1 2 3 ldots p 1 quad quad quad Spravdi zhodne z chisel a 2 a 3 a p 1 a displaystyle a 2a 3a ldots p 1 a ne dilitsya na p displaystyle p oskilki i a displaystyle a i bud yake z chisel 1 2 3 p 1 displaystyle 1 2 3 ldots p 1 ye vzayemno prosti z p displaystyle p Dali vsi chisla a 2 a p 1 a displaystyle a 2a ldots p 1 a mayut buti vidminnimi odne vid odnogo za modulem p displaystyle p Spravdi yaksho k a m a mod p displaystyle ka equiv ma pmod p de k displaystyle k i m displaystyle m nalezhat mnozhini chisel 1 2 p 1 displaystyle 1 2 ldots p 1 to zvazhayuchi na vzayemnu prostotu a displaystyle a i p displaystyle p otrimuyemo k m mod p displaystyle k equiv m pmod p sho nemozhlivo Vidpovidno yaksho mi peremnozhimo obidvi poslidovnosti to rezultati povinni buti ekvivalentni za modulem p displaystyle p a 2 a 3 a p 1 a 1 2 3 p 1 mod p displaystyle a times 2a times 3a times cdots times p 1 a equiv 1 times 2 times 3 times cdots p 1 pmod p Pislya perestanovki mnozhnikiv i perepoznachennya otrimuyemo a p 1 p 1 p 1 mod p displaystyle a p 1 p 1 equiv p 1 pmod p Ostatochno zvazhayuchi sho p displaystyle p i p 1 displaystyle p 1 vzayemno prosti oderzhuyemo tverdzhennya teoremi a p 1 1 mod p displaystyle a p 1 equiv 1 pmod p Dovedennya 3 kombinatorne Pripustimo sho mi mayemo namistinki a displaystyle a riznih koloriv i nam potribno zrobiti z nih namisto dovzhinoyu p displaystyle p namistinok Dlya pochatku zrobimo strichku z p displaystyle p namistinok Isnuye a p displaystyle a p riznih strichok Vidkinemo vsi odnotonni strichki yih vsogo a displaystyle a Zalishayetsya a p a displaystyle a p a riznih strichok Z yednayemo pochatok kozhnoyi strichki z yiyi kincem Teper deyaki namista stali odnakovimi yaksho yih povernuti Oskilki isnuye p displaystyle p riznih ciklichnih perestanovok to isnuye a p a p displaystyle frac a p a p riznih namist Vihodyachi z interpretaciyi chisla a p a p displaystyle frac a p a p vono cile Div takozhChisla Karmajkla psevdoprosti chisla Teorema Ferma Teorema Ferma velika DzherelaOjstin Ore 2003 Priglashenie v teoriyu chisel Moskva Editorial URSS ISBN 5 354 00252 4 Arthur Engel 1997 Problem Solving Strategies New York Springer Verlag ISBN 0 387 98219 1
Топ