Число Кармайкла — додатне складене число n, що задовольняє умову для всіх цілих b, взаємно простих з n.
Названі на честь американського математика [en], що у 1910 році знайшов перше і найменше таке число, .
Загальне уявлення
Мала теорема Ферма стверджує, що будь-яке просте число задовольняє вище вказану властивість. У цьому сенсі числа Кармайкла подібні простим. Тому вони називаються псевдопростими числами.
Еквівалентне визначення чисел Кармайкла дає критерій Корсельта.
Теорема (Корсельт, 1899) : Складене число n є числом Кармайкла тоді і тільки тоді, коли n вільне від квадратів і для всіх простих дільників p числа n вірно p − 1 | n − 1 (позначення а | b означає, що а ділить b).
З цієї теореми випливає, що всі числа Кармайкла непарні, оскільки будь-яке парне складене число, вільне від квадратів, має принаймні одного непарного простого дільника, і тому з p − 1 | n − 1 випливає, що парне ділить непарне, що невірно - суперечність.
Такі числа Кармайкла:
У 1994 році Альфорс, Ґренвіл і Померанс довели, що для достатньо великих чисел n кількість чисел Кармайкла, що не перевищують n є не меншою n2 / 7. Звідси зокрема випливає нескінченність множини цих чисел.
Властивості
Числа Кармайкла мають щонайменше три прості додатні множники. Нижче подані найменші такі числа з простими множниками:
k | |
---|---|
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 |
Перші числа Кармайкла з чотирма простими множниками:
i | |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
Розподіл
Нехай позначає кількість чисел Кармайкла, менших за . Ердеш довів у 1956 році, що
для деякої константи ;
У наступній таблиці наведені наближені значення цієї константи:
n | k |
---|---|
104 | 2.19547 |
106 | 1.97946 |
108 | 1.90495 |
1010 | 1.86870 |
1012 | 1.86377 |
1014 | 1.86293 |
1016 | 1.86406 |
1018 | 1.86522 |
1020 | 1.86598 |
Цікаві факти
Друге число Кармайкла (1105) може бути подане як сума двох квадратів більшою кількістю способів, ніж будь-яке менше число. Третє число Кармайкла (1729) є числом Рамануджана — Харді (найменше число, що можна записати у вигляді суми двох кубів двома способами).
Джерела
- Chernick, J. (1935). On Fermat's simple theorem. Bull. Amer. Math. Soc. 45, 269–274.
- Ribenboim, Paolo (1996). The New Book of Prime Number Records.
- Löh, Günter and Niebuhr, Wolfgang (1996). A new algorithm for constructing large Carmichael numbers(pdf)
- Korselt (1899). Problème chinois. L'intermédiaire des mathématiciens, 6, 142–143.
- Carmichael, R. D. (1912) On composite numbers P which satisfy the Fermat congruence . Am. Math. Month. 19 22–27.
- Erdős, Paul (1956). On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4, 201 –206.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Chislo Karmajkla dodatne skladene chislo n sho zadovolnyaye umovu b n 1 1 mod n displaystyle b n 1 equiv 1 pmod n dlya vsih cilih b vzayemno prostih z n Nazvani na chest amerikanskogo matematika en sho u 1910 roci znajshov pershe i najmenshe take chislo Zagalne uyavlennyaMala teorema Ferma stverdzhuye sho bud yake proste chislo zadovolnyaye vishe vkazanu vlastivist U comu sensi chisla Karmajkla podibni prostim Tomu voni nazivayutsya psevdoprostimi chislami Ekvivalentne viznachennya chisel Karmajkla daye kriterij Korselta Teorema Korselt 1899 Skladene chislo n ye chislom Karmajkla todi i tilki todi koli n vilne vid kvadrativ i dlya vsih prostih dilnikiv p chisla n virno p 1 n 1 poznachennya a b oznachaye sho a dilit b Z ciyeyi teoremi viplivaye sho vsi chisla Karmajkla neparni oskilki bud yake parne skladene chislo vilne vid kvadrativ maye prinajmni odnogo neparnogo prostogo dilnika i tomu z p 1 n 1 viplivaye sho parne dilit neparne sho nevirno superechnist Taki chisla Karmajkla 1105 5 13 17 4 1104 12 1104 16 1104 displaystyle 1105 5 cdot 13 cdot 17 qquad 4 mid 1104 12 mid 1104 16 mid 1104 1729 7 13 19 6 1728 12 1728 18 1728 displaystyle 1729 7 cdot 13 cdot 19 qquad 6 mid 1728 12 mid 1728 18 mid 1728 2465 5 17 29 4 2464 16 2464 28 2464 displaystyle 2465 5 cdot 17 cdot 29 qquad 4 mid 2464 16 mid 2464 28 mid 2464 2821 7 13 31 6 2820 12 2820 30 2820 displaystyle 2821 7 cdot 13 cdot 31 qquad 6 mid 2820 12 mid 2820 30 mid 2820 6601 7 23 41 6 6600 22 6600 40 6600 displaystyle 6601 7 cdot 23 cdot 41 qquad 6 mid 6600 22 mid 6600 40 mid 6600 8911 7 19 67 6 8910 18 8910 66 8910 displaystyle 8911 7 cdot 19 cdot 67 qquad 6 mid 8910 18 mid 8910 66 mid 8910 U 1994 roci Alfors Grenvil i Pomerans doveli sho dlya dostatno velikih chisel n kilkist chisel Karmajkla sho ne perevishuyut n ye ne menshoyu n2 7 Zvidsi zokrema viplivaye neskinchennist mnozhini cih chisel VlastivostiChisla Karmajkla mayut shonajmenshe tri prosti dodatni mnozhniki Nizhche podani najmenshi taki chisla z k 3 4 5 displaystyle k 3 4 5 ldots prostimi mnozhnikami k 3 561 3 11 17 displaystyle 561 3 cdot 11 cdot 17 4 41041 7 11 13 41 displaystyle 41041 7 cdot 11 cdot 13 cdot 41 5 825265 5 7 17 19 73 displaystyle 825265 5 cdot 7 cdot 17 cdot 19 cdot 73 6 321197185 5 19 23 29 37 137 displaystyle 321197185 5 cdot 19 cdot 23 cdot 29 cdot 37 cdot 137 7 5394826801 7 13 17 23 31 67 73 displaystyle 5394826801 7 cdot 13 cdot 17 cdot 23 cdot 31 cdot 67 cdot 73 8 232250619601 7 11 13 17 31 37 73 163 displaystyle 232250619601 7 cdot 11 cdot 13 cdot 17 cdot 31 cdot 37 cdot 73 cdot 163 9 9746347772161 7 11 13 17 19 31 37 41 641 displaystyle 9746347772161 7 cdot 11 cdot 13 cdot 17 cdot 19 cdot 31 cdot 37 cdot 41 cdot 641 Pershi chisla Karmajkla z chotirma prostimi mnozhnikami i 1 41041 7 11 13 41 displaystyle 41041 7 cdot 11 cdot 13 cdot 41 2 62745 3 5 47 89 displaystyle 62745 3 cdot 5 cdot 47 cdot 89 3 63973 7 13 19 37 displaystyle 63973 7 cdot 13 cdot 19 cdot 37 4 75361 11 13 17 31 displaystyle 75361 11 cdot 13 cdot 17 cdot 31 5 101101 7 11 13 101 displaystyle 101101 7 cdot 11 cdot 13 cdot 101 6 126217 7 13 19 73 displaystyle 126217 7 cdot 13 cdot 19 cdot 73 7 172081 7 13 31 61 displaystyle 172081 7 cdot 13 cdot 31 cdot 61 8 188461 7 13 19 109 displaystyle 188461 7 cdot 13 cdot 19 cdot 109 9 278545 5 17 29 113 displaystyle 278545 5 cdot 17 cdot 29 cdot 113 10 340561 13 17 23 67 displaystyle 340561 13 cdot 17 cdot 23 cdot 67 RozpodilNehaj C X displaystyle C X poznachaye kilkist chisel Karmajkla menshih za X displaystyle X Erdesh doviv u 1956 roci sho C X lt X exp k log X log log log X log log X displaystyle C X lt X exp frac k log X log log log X log log X dlya deyakoyi konstanti k displaystyle k U nastupnij tablici navedeni nablizheni znachennya ciyeyi konstanti n k 104 2 19547 106 1 97946 108 1 90495 1010 1 86870 1012 1 86377 1014 1 86293 1016 1 86406 1018 1 86522 1020 1 86598Cikavi faktiDruge chislo Karmajkla 1105 mozhe buti podane yak suma dvoh kvadrativ bilshoyu kilkistyu sposobiv nizh bud yake menshe chislo Tretye chislo Karmajkla 1729 ye chislom Ramanudzhana Hardi najmenshe chislo sho mozhna zapisati u viglyadi sumi dvoh kubiv dvoma sposobami DzherelaChernick J 1935 On Fermat s simple theorem Bull Amer Math Soc 45 269 274 Ribenboim Paolo 1996 The New Book of Prime Number Records Loh Gunter and Niebuhr Wolfgang 1996 A new algorithm for constructing large Carmichael numbers pdf Korselt 1899 Probleme chinois L intermediaire des mathematiciens 6 142 143 Carmichael R D 1912 On composite numbers P which satisfy the Fermat congruence a P 1 1 mod P displaystyle a P 1 equiv 1 bmod P Am Math Month 19 22 27 Erdos Paul 1956 On pseudoprimes and Carmichael numbers Publ Math Debrecen 4 201 206