Синтетична геноміка — це галузь синтетичної біології, яка використовує аспекти генетичної модифікації вже існуючих форм життя або штучний синтез генів для створення нової ДНК або цілих форм життя.
Синтетична геноміка може відіграти важливу роль у лікуванні генетичних захворювань людини, надаючи інструменти для точного редагування геному та генної терапії.
Синтетична геноміка, зокрема, використовує сконструйовані генні схеми для програмування живих клітин, підвищуючи точність і ефективність біотехнологічних застосувань, таких як генотерапія, цільова доставка ліків, метаболічна і мікробіомна інженерія, а також синтез біоматеріалу. Механістичне моделювання та методи машинного навчання використовуються в поєднанні з синтетичною геномікою, перевіряючи призначені функції та покращуючи швидкість і точність прогнозів.
Огляд
Синтетична геноміка відрізняється від генетичної інженерії в тому сенсі, що вона не використовує природні гени у створенні форм життя. Синтетична геноміка може використовувати спеціально розроблені серії пар основ, хоча в більш розширеному та наразі нереалізованому сенсі синтетична геноміка може використовувати генетичні коди, які не складаються з двох пар основ ДНК, які зараз використовуються життям.
Здатність конструювати довгі ланцюги пар основ дешево і точно у великих масштабах дозволила дослідникам проводити експерименти з геномами, яких не існує в природі. У поєднанні з розвитком моделей згортання білка та зменшенням обчислювальних витрат синтетична геноміка починає вступати в продуктивну стадію існування.
Історія
У 2010 році дослідникам вперше вдалося створити синтетичний організм. Цей прорив був здійснений компанією Synthetic Genomics, Inc., яка продовжує спеціалізуватися на дослідженні та комерціалізації спеціально розроблених геномів. Це було досягнуто шляхом синтезу геному розміром 600 кбіт (схожого на геном Mycoplasma genitalium, за винятком вставки кількох водяних знаків) за допомогою методу збірки Гібсона та рекомбінації, пов’язаної з трансформацією.
Лікування генетичних хвороб
Синтетична геноміка може відіграти важливу роль у лікуванні генетичних захворювань людини, надаючи інструменти для точного редагування геному та генотерапії. Одним із основних застосувань синтетичної геноміки є розробка генної терапії, яка передбачає введення здорових копій генів у клітини для заміни або доповнення несправних генів. Методи синтетичної геноміки можна використовувати для розробки та синтезу індивідуальних послідовностей ДНК, які можна використовувати як вектори для доставки терапевтичних генів у клітини.
Крім того, синтетичну геноміку також можна використовувати для точного редагування генома клітин шляхом додавання, видалення або модифікації певних генів. Цей підхід можна використовувати для виправлення генетичних мутацій, які викликають захворювання, або для створення клітин з новими чи покращеними функціями.
Одним із перспективних застосувань синтетичної геноміки в генній терапії є використання технології редагування генів (CRISPR-Cas9), яка дозволяє вносити високоточні та цілеспрямовані модифікації геному. CRISPR-Cas9 вже успішно використовувався для лікування генетичних захворювань у тварин, і тривають клінічні випробування, які перевіряють його безпеку та ефективність на людях.
Загалом, синтетична геноміка має великі перспективи для розробки нових та ефективних методів лікування широкого спектру генетичних захворювань, хоча необхідні додаткові дослідження та розробки, перш ніж ці методи можна буде регулярно використовувати в клінічних умовах.
Технологія рекомбінантної ДНК
Незабаром після відкриття рестрикційних ендонуклеаз і лігаз галузь генетики почала використовувати ці молекулярні інструменти для збирання штучних послідовностей із менших фрагментів синтетичної або природної ДНК. Перевага у використанні рекомбінаторного підходу на відміну від безперервного синтезу ДНК випливає із зворотного зв’язку, який існує між довжиною синтетичної ДНК та відсотком чистоти цієї синтетичної довжини. Іншими словами, у міру того як синтезуються довші послідовності, кількість клонів, що містять помилки, зростає через притаманну частоту помилок поточних технологій.
Хоча технологія рекомбінантної ДНК частіше використовується для конструювання злитих білків і плазмід, вже з’явилося кілька методів з більшою потужністю, що дозволяє конструювати цілі геноми.
Збірка полімеразного циклу
Полімеразна циклічна збірка (PCA) використовує серію олігонуклеотидів довжиною приблизно 40-60 нуклеотидів, які разом складають обидва ланцюги ДНК, що синтезується. Ці олігонуклеотиди розроблені таким чином, що один олігонуклеотид з одного ланцюга містить довжину приблизно 20 нуклеотидів на кожному кінці, що є комплементарним до послідовностей двох різних олігонуклеотидів на протилежному ланцюзі, таким чином створюючи ділянки перекриття. Весь набір обробляється за допомогою циклів: (a) гібридизація при 60°C; (b) подовження за допомогою полімерази Taq і стандартної лігази; і (c) денатурація при 95°C, утворюючи все довші безперервні ланцюги, що зрештою призводить до остаточного синтезованого геному.
PCA був використаний для створення першого в історії синтетичного геному вірусу Phi X 174.
Метод складання Гібсона
Метод збірки Гібсона, розроблений Деніелом Гібсоном під час його роботи в Інституті Дж. Крейга Вентера, потребує набору дволанцюгових касет ДНК, які складають весь геном, що синтезується. Касети відрізняються від контигів за визначенням тим, що ці послідовності містять ділянки гомології з іншими касетами для цілей рекомбінації. На відміну від Збірки полімеразного циклу, Метод збірки Гібсона є одноетапною ізотермічною реакцією з більшою ємністю послідовності; отже, він використовується замість збірки полімеразного циклу для геномів розміром понад 6 кб.
Екзонуклеаза Т5 виконує реакцію зворотного жування на кінцевих сегментах, працюючи в напрямку від 5' до 3', таким чином створюючи комплементарні виступи. Виступи гібридизуються один з одним, ДНК-полімераза Phusion заповнює всі відсутні нуклеотиди, а виїмки запечатуються лігазою. Однак кількість геномів, які можна синтезувати лише за допомогою цього методу, обмежена, оскільки коли касети ДНК збільшуються в довжину, вони вимагають розмноження in vitro для продовження гібридизації; відповідно, збирання Гібсона часто використовується в поєднанні з рекомбінацією, пов'язаною з перетворенням (див. нижче), щоб синтезувати геноми розміром у кілька сотень кілобаз.
Трансформація-асоційована рекомбінація
Метою технології трансформація-асоційованної рекомбінації (TAR) у синтетичній геноміці є об’єднання контигів ДНК за допомогою гомологічної рекомбінації, що виконується дріжджовою штучною хромосомою (YAC). Важливим є елемент CEN у векторі YAC, який відповідає центромері дріжджів. Ця послідовність надає вектору здатність поводитися хромосомним чином, таким чином дозволяючи йому виконувати гомологічну рекомбінацію.
Спочатку виконується клонування репарації розриву для створення ділянок гомології, фланкуючих контиги ДНК.
Клонування з відновленням розривів — це особлива форма полімеразної ланцюгової реакції, у якій використовуються спеціалізовані праймери з розширеннями, що виходять за межі послідовності ДНК-мішені. Потім касети ДНК піддаються впливу вектора YAC, який керує процесом гомологічної рекомбінації, таким чином з’єднуючи касети ДНК.
Технологія Polymerase Cycling Assembly та технологія TAR були використані разом для побудови генома Mycoplasma genitalium розміром 600 кб у 2008 році, першого в історії синтетичного організму. Подібні кроки були зроблені для синтезу більшого генома Mycoplasma mycoides через кілька років
Неприродна пара основ (UBP)
Неприродна пара основ (UBP) — це розроблена субодиниця (або нуклеооснова ) ДНК, яка створюється в лабораторії та не зустрічається в природі. У 2012 році група американських вчених під керівництвом Флойда Е. Ромесберга, біолога-хіміка з Науково-дослідного інституту Скріппса в Сан-Дієго, Каліфорнія, опублікувала, що його команда розробила неприродну пару основ (UBP). Два нових штучних нуклеотиди або неприродна пара основ (UBP) були названі d5SICS і dNaM. Ці штучні нуклеотиди, що несуть гідрофобні нуклеооснови, містять два злитих ароматичних кільця, які утворюють комплекс (d5SICS–dNaM) або пару основ у ДНК.
У 2014 році та сама команда з Науково-дослідного інституту Скріппса повідомила, що вони синтезували ділянку кільцевої ДНК — плазміди, що містить природні пари основ T-A і C-G разом із найефективнішою лабораторією UBP Ромесберга, і вставили її в клітини звичайної бактерії E. coli, яка успішно реплікувала неприродні пари основ у кількох поколіннях. Це перший відомий приклад живого організму, який передає розширений генетичний код наступним поколінням. Це було частково досягнуто шляхом додавання підтримуючого гена водоростей, який експресує транспортер нуклеотидного трифосфату, який ефективно імпортує трифосфати як d5SICSTP, так і dNaMTP у бактерії E. coli. Потім природні бактеріальні шляхи реплікації використовують їх для точної реплікації плазміди, що містить d5SICS–dNaM.
Успішне включення третьої пари основ є значним проривом у досягненні мети значного розширення кількості амінокислот, які можуть бути закодовані ДНК, від існуючих 20 амінокислот до теоретично можливих 172, таким чином розширюючи потенціал живих організмів до виробляти нові білки. Штучні ланцюжки ДНК ще нічого не кодують, але вчені припускають, що вони можуть бути розроблені для виробництва нових білків, які можуть мати промислове чи фармацевтичне використання.
Комп’ютерні моделі
У квітні 2019 року вчені з ETH Zurich повідомили про створення першого в світі генома бактерії під назвою Caulobacter ethensis-2.0, створеного повністю за допомогою комп’ютера, хоча спорідненої життєздатної форми C. ethensis-2.0 ще не існує.
Дивись також
Додаткова література
- Voigt Christopher A. (11 грудня 2020). Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nature Communications (англ.) 11 (1). doi:10.1038/s41467-020-20122-2.
- Schindler Daniel (2020). Genetic Engineering and Synthetic Genomics in Yeast to Understand Life and Boost Biotechnology. Bioengineering (англ.) 7 (4). doi:10.3390/bioengineering7040137.
- Grazioli Simona; Petris Gianluca (2021). Synthetic genomics for curing genetic diseases. Progress in Molecular Biology and Translational Science 182. doi:10.1016/bs.pmbts.2021.02.002.
- Hey Maya; Szymanski Erika A. (1 січня 2022). Following the organism to map synthetic genomics. Biotechnology Notes 3. doi:10.1016/j.biotno.2022.07.001.
Посилання
- . Дослідження, проведене в 2004 році для Міністерства Освіти США на цю тему.
- Вплив розвитку синтетичної геноміки: слухання в Комітеті з енергетики та торгівлі Палати представників (США), 111й Конгрес (2010).
- Synthetic genomics for curing genetic diseases (2021)
- Synthetic genomics advances and promise (2022)
Примітки
- Grazioli, Simona; Petris, Gianluca (2021). Synthetic genomics for curing genetic diseases. Progress in Molecular Biology and Translational Science. Т. 182. с. 477—520. doi:10.1016/bs.pmbts.2021.02.002. ISSN 1878-0814. PMID 34175051. Процитовано 25 лютого 2023.
- Şimşek, Emrah; Yao, Yi; Lee, Dongheon; You, Lingchong (2023-06). Toward predictive engineering of gene circuits. Trends in Biotechnology. Т. 41, № 6. с. 760—768. doi:10.1016/j.tibtech.2022.11.001. ISSN 0167-7799. Процитовано 10 червня 2023.
- Hotz, Robert Lee. Scientists Create Synthetic Organism. Wall Street Journal. ISSN 0099-9660. Процитовано 23 вересня 2015.
- Synthetic Genomics, Inc. - Our Business. www.syntheticgenomics.com. Процитовано 26 вересня 2015.
- Montague, Michael G; Lartigue, Carole; Vashee, Sanjay (1 січня 2012). Synthetic genomics: potential and limitations. Current Opinion in Biotechnology. 23 (5): 659—665. doi:10.1016/j.copbio.2012.01.014. PMID 22342755.
- Montague, Michael G; Lartigue, Carole; Vashee, Sanjay (2012). Synthetic genomics: potential and limitations. Current Opinion in Biotechnology. 23 (5): 659—665. doi:10.1016/j.copbio.2012.01.014. PMID 22342755.
- Gibson, Daniel (2011). Synthetic Biology, Part B: Computer Aided Design and DNA Assembly; Chapter Fifteen - Enzymatic Assembly of Overlapping DNA Fragments. Academic Press. с. 349—361. ISBN .
- Stemmer, Willem P. C.; Crameri, Andreas; Ha, Kim D.; Brennan, Thomas M.; Heyneker, Herbert L. (16 жовтня 1995). Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene. 164 (1): 49—53. doi:10.1016/0378-1119(95)00511-4. PMID 7590320.
- Smith, Hamilton O.; Hutchison, Clyde A.; Pfannkoch, Cynthia; Venter, J. Craig (23 грудня 2003). Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides. Proceedings of the National Academy of Sciences. 100 (26): 15440—15445. Bibcode:2003PNAS..10015440S. doi:10.1073/pnas.2237126100. ISSN 0027-8424. PMC 307586. PMID 14657399.
- Gibson, Daniel G; Young, Lei; Chuang, Ray-Yuan; Venter, J Craig; Hutchison, Clyde A; Smith, Hamilton O (12 квітня 2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods. 6 (5): 343—345. doi:10.1038/nmeth.1318. PMID 19363495.
- Kouprina, Natalay; Larionov, Vladimir (1 грудня 2003). Exploiting the yeast Saccharomyces cerevisiae for the study of the organization and evolution of complex genomes. FEMS Microbiology Reviews. 27 (5): 629—649. doi:10.1016/S0168-6445(03)00070-6. ISSN 1574-6976. PMID 14638416.
- Marsischky, Gerald; LaBaer, Joshua (15 жовтня 2004). Many Paths to Many Clones: A Comparative Look at High-Throughput Cloning Methods. Genome Research. 14 (10b): 2020—2028. doi:10.1101/gr.2528804. ISSN 1088-9051. PMID 15489321.
- Gibson, Daniel G.; Benders, Gwynedd A.; Andrews-Pfannkoch, Cynthia; Denisova, Evgeniya A.; Baden-Tillson, Holly; Zaveri, Jayshree; Stockwell, Timothy B.; Brownley, Anushka; Thomas, David W. (29 лютого 2008). Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome. Science. 319 (5867): 1215—1220. Bibcode:2008Sci...319.1215G. doi:10.1126/science.1151721. ISSN 0036-8075. PMID 18218864.
- Gibson, Daniel G.; Glass, John I.; Lartigue, Carole; Noskov, Vladimir N.; Chuang, Ray-Yuan; Algire, Mikkel A.; Benders, Gwynedd A.; Montague, Michael G.; Ma, Li (2 липня 2010). Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science. 329 (5987): 52—56. Bibcode:2010Sci...329...52G. doi:10.1126/science.1190719. ISSN 0036-8075. PMID 20488990.
- Malyshev, Denis A.; Dhami, Kirandeep; Quach, Henry T.; Lavergne, Thomas; Ordoukhanian, Phillip (24 липня 2012). Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. Proceedings of the National Academy of Sciences of the United States of America. 109 (30): 12005—12010. Bibcode:2012PNAS..10912005M. doi:10.1073/pnas.1205176109. PMC 3409741. PMID 22773812.
- Malyshev, Denis A.; Dhami, Kirandeep; Lavergne, Thomas; Chen, Tingjian; Dai, Nan; Foster, Jeremy M.; Corrêa, Ivan R.; Romesberg, Floyd E. (7 травня 2014). A semi-synthetic organism with an expanded genetic alphabet. Nature. 509 (7500): 385—8. Bibcode:2014Natur.509..385M. doi:10.1038/nature13314. PMC 4058825. PMID 24805238.
- Callaway, Ewan (7 травня 2014). Scientists Create First Living Organism With 'Artificial' DNA. Nature News. Huffington Post. Процитовано 8 травня 2014.
- BRADLEY J. FIKES (7 травня 2014). Life engineered with expanded DNA code. San Diego Union-Tribune (амер.). Процитовано 25 лютого 2023.
- Sample, Ian (7 травня 2014). First life forms to pass on artificial DNA engineered by US scientists. The Guardian. Процитовано 8 травня 2014.
- Pollack, Andrew (7 травня 2014). Scientists Add Letters to DNA's Alphabet, Raising Hope and Fear. New York Times. Процитовано 8 травня 2014.
- ETH Zurich (1 квітня 2019). First bacterial genome created entirely with a computer.
- Venetz, Jonathan E. та ін. (1 квітня 2019). Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality. Proceedings of the National Academy of Sciences of the United States of America. 116 (16): 8070—8079. doi:10.1073/pnas.1818259116. PMC 6475421. PMID 30936302.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Sintetichna genomika ce galuz sintetichnoyi biologiyi yaka vikoristovuye aspekti genetichnoyi modifikaciyi vzhe isnuyuchih form zhittya abo shtuchnij sintez geniv dlya stvorennya novoyi DNK abo cilih form zhittya Zbirka polimeraznogo ciklu Sintetichna genomika mozhe vidigrati vazhlivu rol u likuvanni genetichnih zahvoryuvan lyudini nadayuchi instrumenti dlya tochnogo redaguvannya genomu ta gennoyi terapiyi Sintetichna genomika zokrema vikoristovuye skonstrujovani genni shemi dlya programuvannya zhivih klitin pidvishuyuchi tochnist i efektivnist biotehnologichnih zastosuvan takih yak genoterapiya cilova dostavka likiv metabolichna i mikrobiomna inzheneriya a takozh sintez biomaterialu Mehanistichne modelyuvannya ta metodi mashinnogo navchannya vikoristovuyutsya v poyednanni z sintetichnoyu genomikoyu pereviryayuchi priznacheni funkciyi ta pokrashuyuchi shvidkist i tochnist prognoziv OglyadSintetichna genomika vidriznyayetsya vid genetichnoyi inzheneriyi v tomu sensi sho vona ne vikoristovuye prirodni geni u stvorenni form zhittya Sintetichna genomika mozhe vikoristovuvati specialno rozrobleni seriyi par osnov hocha v bilsh rozshirenomu ta narazi nerealizovanomu sensi sintetichna genomika mozhe vikoristovuvati genetichni kodi yaki ne skladayutsya z dvoh par osnov DNK yaki zaraz vikoristovuyutsya zhittyam Zdatnist konstruyuvati dovgi lancyugi par osnov deshevo i tochno u velikih masshtabah dozvolila doslidnikam provoditi eksperimenti z genomami yakih ne isnuye v prirodi U poyednanni z rozvitkom modelej zgortannya bilka ta zmenshennyam obchislyuvalnih vitrat sintetichna genomika pochinaye vstupati v produktivnu stadiyu isnuvannya IstoriyaU 2010 roci doslidnikam vpershe vdalosya stvoriti sintetichnij organizm Cej proriv buv zdijsnenij kompaniyeyu Synthetic Genomics Inc yaka prodovzhuye specializuvatisya na doslidzhenni ta komercializaciyi specialno rozroblenih genomiv Ce bulo dosyagnuto shlyahom sintezu genomu rozmirom 600 kbit shozhogo na genom Mycoplasma genitalium za vinyatkom vstavki kilkoh vodyanih znakiv za dopomogoyu metodu zbirki Gibsona ta rekombinaciyi pov yazanoyi z transformaciyeyu Likuvannya genetichnih hvorobSintetichna genomika mozhe vidigrati vazhlivu rol u likuvanni genetichnih zahvoryuvan lyudini nadayuchi instrumenti dlya tochnogo redaguvannya genomu ta genoterapiyi Odnim iz osnovnih zastosuvan sintetichnoyi genomiki ye rozrobka gennoyi terapiyi yaka peredbachaye vvedennya zdorovih kopij geniv u klitini dlya zamini abo dopovnennya nespravnih geniv Metodi sintetichnoyi genomiki mozhna vikoristovuvati dlya rozrobki ta sintezu individualnih poslidovnostej DNK yaki mozhna vikoristovuvati yak vektori dlya dostavki terapevtichnih geniv u klitini Krim togo sintetichnu genomiku takozh mozhna vikoristovuvati dlya tochnogo redaguvannya genoma klitin shlyahom dodavannya vidalennya abo modifikaciyi pevnih geniv Cej pidhid mozhna vikoristovuvati dlya vipravlennya genetichnih mutacij yaki viklikayut zahvoryuvannya abo dlya stvorennya klitin z novimi chi pokrashenimi funkciyami Odnim iz perspektivnih zastosuvan sintetichnoyi genomiki v gennij terapiyi ye vikoristannya tehnologiyi redaguvannya geniv CRISPR Cas9 yaka dozvolyaye vnositi visokotochni ta cilespryamovani modifikaciyi genomu CRISPR Cas9 vzhe uspishno vikoristovuvavsya dlya likuvannya genetichnih zahvoryuvan u tvarin i trivayut klinichni viprobuvannya yaki pereviryayut jogo bezpeku ta efektivnist na lyudyah Zagalom sintetichna genomika maye veliki perspektivi dlya rozrobki novih ta efektivnih metodiv likuvannya shirokogo spektru genetichnih zahvoryuvan hocha neobhidni dodatkovi doslidzhennya ta rozrobki persh nizh ci metodi mozhna bude regulyarno vikoristovuvati v klinichnih umovah Tehnologiya rekombinantnoyi DNKNezabarom pislya vidkrittya restrikcijnih endonukleaz i ligaz galuz genetiki pochala vikoristovuvati ci molekulyarni instrumenti dlya zbirannya shtuchnih poslidovnostej iz menshih fragmentiv sintetichnoyi abo prirodnoyi DNK Perevaga u vikoristanni rekombinatornogo pidhodu na vidminu vid bezperervnogo sintezu DNK viplivaye iz zvorotnogo zv yazku yakij isnuye mizh dovzhinoyu sintetichnoyi DNK ta vidsotkom chistoti ciyeyi sintetichnoyi dovzhini Inshimi slovami u miru togo yak sintezuyutsya dovshi poslidovnosti kilkist kloniv sho mistyat pomilki zrostaye cherez pritamannu chastotu pomilok potochnih tehnologij Hocha tehnologiya rekombinantnoyi DNK chastishe vikoristovuyetsya dlya konstruyuvannya zlitih bilkiv i plazmid vzhe z yavilosya kilka metodiv z bilshoyu potuzhnistyu sho dozvolyaye konstruyuvati cili genomi Zbirka polimeraznogo ciklu Zbirka polimeraznogo ciklu Sini strilki predstavlyayut oligonukleotidi rozmirom vid 40 do 60 p n z oblastyami sho perekrivayutsya priblizno 20 p n Cikl povtoryuyetsya poki ne bude skonstrujovanij ostatochnij genom Polimerazna ciklichna zbirka PCA vikoristovuye seriyu oligonukleotidiv dovzhinoyu priblizno 40 60 nukleotidiv yaki razom skladayut obidva lancyugi DNK sho sintezuyetsya Ci oligonukleotidi rozrobleni takim chinom sho odin oligonukleotid z odnogo lancyuga mistit dovzhinu priblizno 20 nukleotidiv na kozhnomu kinci sho ye komplementarnim do poslidovnostej dvoh riznih oligonukleotidiv na protilezhnomu lancyuzi takim chinom stvoryuyuchi dilyanki perekrittya Ves nabir obroblyayetsya za dopomogoyu cikliv a gibridizaciya pri 60 C b podovzhennya za dopomogoyu polimerazi Taq i standartnoyi ligazi i c denaturaciya pri 95 C utvoryuyuchi vse dovshi bezperervni lancyugi sho zreshtoyu prizvodit do ostatochnogo sintezovanogo genomu PCA buv vikoristanij dlya stvorennya pershogo v istoriyi sintetichnogo genomu virusu Phi X 174 Metod skladannya Gibsona Metod skladannya Gibsona Sini strilki predstavlyayut kaseti DNK yaki mozhut buti bud yakogo rozmiru napriklad 6 kb kozhna Pomaranchevi segmenti predstavlyayut dilyanki identichnih poslidovnostej DNK Cej proces mozhna zdijsniti z kilkoma pochatkovimi kasetami Metod zbirki Gibsona rozroblenij Denielom Gibsonom pid chas jogo roboti v Instituti Dzh Krejga Ventera potrebuye naboru dvolancyugovih kaset DNK yaki skladayut ves genom sho sintezuyetsya Kaseti vidriznyayutsya vid kontigiv za viznachennyam tim sho ci poslidovnosti mistyat dilyanki gomologiyi z inshimi kasetami dlya cilej rekombinaciyi Na vidminu vid Zbirki polimeraznogo ciklu Metod zbirki Gibsona ye odnoetapnoyu izotermichnoyu reakciyeyu z bilshoyu yemnistyu poslidovnosti otzhe vin vikoristovuyetsya zamist zbirki polimeraznogo ciklu dlya genomiv rozmirom ponad 6 kb Ekzonukleaza T5 vikonuye reakciyu zvorotnogo zhuvannya na kincevih segmentah pracyuyuchi v napryamku vid 5 do 3 takim chinom stvoryuyuchi komplementarni vistupi Vistupi gibridizuyutsya odin z odnim DNK polimeraza Phusion zapovnyuye vsi vidsutni nukleotidi a viyimki zapechatuyutsya ligazoyu Odnak kilkist genomiv yaki mozhna sintezuvati lishe za dopomogoyu cogo metodu obmezhena oskilki koli kaseti DNK zbilshuyutsya v dovzhinu voni vimagayut rozmnozhennya in vitro dlya prodovzhennya gibridizaciyi vidpovidno zbirannya Gibsona chasto vikoristovuyetsya v poyednanni z rekombinaciyeyu pov yazanoyu z peretvorennyam div nizhche shob sintezuvati genomi rozmirom u kilka soten kilobaz Transformaciya asocijovana rekombinaciya Klonuvannya usunennya rozriviv Sini strilki predstavlyayut kontigi DNK Segmenti odnogo koloru predstavlyayut komplementarni abo identichni poslidovnosti Specializovani prajmeri z podovzhennyami vikoristovuyutsya v polimeraznij lancyugovij reakciyi dlya stvorennya dilyanok gomologiyi na kincevih kincyah kontigiv DNK Metoyu tehnologiyi transformaciya asocijovannoyi rekombinaciyi TAR u sintetichnij genomici ye ob yednannya kontigiv DNK za dopomogoyu gomologichnoyi rekombinaciyi sho vikonuyetsya drizhdzhovoyu shtuchnoyu hromosomoyu YAC Vazhlivim ye element CEN u vektori YAC yakij vidpovidaye centromeri drizhdzhiv Cya poslidovnist nadaye vektoru zdatnist povoditisya hromosomnim chinom takim chinom dozvolyayuchi jomu vikonuvati gomologichnu rekombinaciyu Rekombinaciya pov yazana z peretvorennyam Perehresni podiyi vidbuvayutsya mizh dilyankami gomologiyi v kasetah i vektori YAC takim chinom z yednuyuchi menshi poslidovnosti DNK v odin bilshij kontig Spochatku vikonuyetsya klonuvannya reparaciyi rozrivu dlya stvorennya dilyanok gomologiyi flankuyuchih kontigi DNK Klonuvannya z vidnovlennyam rozriviv ce osobliva forma polimeraznoyi lancyugovoyi reakciyi u yakij vikoristovuyutsya specializovani prajmeri z rozshirennyami sho vihodyat za mezhi poslidovnosti DNK misheni Potim kaseti DNK piddayutsya vplivu vektora YAC yakij keruye procesom gomologichnoyi rekombinaciyi takim chinom z yednuyuchi kaseti DNK Tehnologiya Polymerase Cycling Assembly ta tehnologiya TAR buli vikoristani razom dlya pobudovi genoma Mycoplasma genitalium rozmirom 600 kb u 2008 roci pershogo v istoriyi sintetichnogo organizmu Podibni kroki buli zrobleni dlya sintezu bilshogo genoma Mycoplasma mycoides cherez kilka rokivNeprirodna para osnov UBP Neprirodna para osnov UBP ce rozroblena subodinicya abo nukleoosnova DNK yaka stvoryuyetsya v laboratoriyi ta ne zustrichayetsya v prirodi U 2012 roci grupa amerikanskih vchenih pid kerivnictvom Flojda E Romesberga biologa himika z Naukovo doslidnogo institutu Skrippsa v San Diyego Kaliforniya opublikuvala sho jogo komanda rozrobila neprirodnu paru osnov UBP Dva novih shtuchnih nukleotidi abo neprirodna para osnov UBP buli nazvani d5SICS i dNaM Ci shtuchni nukleotidi sho nesut gidrofobni nukleoosnovi mistyat dva zlitih aromatichnih kilcya yaki utvoryuyut kompleks d5SICS dNaM abo paru osnov u DNK U 2014 roci ta sama komanda z Naukovo doslidnogo institutu Skrippsa povidomila sho voni sintezuvali dilyanku kilcevoyi DNK plazmidi sho mistit prirodni pari osnov T A i C G razom iz najefektivnishoyu laboratoriyeyu UBP Romesberga i vstavili yiyi v klitini zvichajnoyi bakteriyi E coli yaka uspishno replikuvala neprirodni pari osnov u kilkoh pokolinnyah Ce pershij vidomij priklad zhivogo organizmu yakij peredaye rozshirenij genetichnij kod nastupnim pokolinnyam Ce bulo chastkovo dosyagnuto shlyahom dodavannya pidtrimuyuchogo gena vodorostej yakij ekspresuye transporter nukleotidnogo trifosfatu yakij efektivno importuye trifosfati yak d5SICSTP tak i dNaMTP u bakteriyi E coli Potim prirodni bakterialni shlyahi replikaciyi vikoristovuyut yih dlya tochnoyi replikaciyi plazmidi sho mistit d5SICS dNaM Uspishne vklyuchennya tretoyi pari osnov ye znachnim prorivom u dosyagnenni meti znachnogo rozshirennya kilkosti aminokislot yaki mozhut buti zakodovani DNK vid isnuyuchih 20 aminokislot do teoretichno mozhlivih 172 takim chinom rozshiryuyuchi potencial zhivih organizmiv do viroblyati novi bilki Shtuchni lancyuzhki DNK she nichogo ne koduyut ale vcheni pripuskayut sho voni mozhut buti rozrobleni dlya virobnictva novih bilkiv yaki mozhut mati promislove chi farmacevtichne vikoristannya Komp yuterni modeliU kvitni 2019 roku vcheni z ETH Zurich povidomili pro stvorennya pershogo v sviti genoma bakteriyi pid nazvoyu Caulobacter ethensis 2 0 stvorenogo povnistyu za dopomogoyu komp yutera hocha sporidnenoyi zhittyezdatnoyi formi C ethensis 2 0 she ne isnuye Divis takozhBioinzheneriya Genoterapiya Redaguvannya genoma Genetichna inzheneriya Sintetichna biologiya Obchislyuvalna biologiyaDodatkova literaturaVoigt Christopher A 11 grudnya 2020 Synthetic biology 2020 2030 six commercially available products that are changing our world Nature Communications angl 11 1 doi 10 1038 s41467 020 20122 2 Schindler Daniel 2020 Genetic Engineering and Synthetic Genomics in Yeast to Understand Life and Boost Biotechnology Bioengineering angl 7 4 doi 10 3390 bioengineering7040137 Grazioli Simona Petris Gianluca 2021 Synthetic genomics for curing genetic diseases Progress in Molecular Biology and Translational Science 182 doi 10 1016 bs pmbts 2021 02 002 Hey Maya Szymanski Erika A 1 sichnya 2022 Following the organism to map synthetic genomics Biotechnology Notes 3 doi 10 1016 j biotno 2022 07 001 Posilannya Doslidzhennya provedene v 2004 roci dlya Ministerstva Osviti SShA na cyu temu Vpliv rozvitku sintetichnoyi genomiki sluhannya v Komiteti z energetiki ta torgivli Palati predstavnikiv SShA 111j Kongres 2010 Synthetic genomics for curing genetic diseases 2021 Synthetic genomics advances and promise 2022 PrimitkiGrazioli Simona Petris Gianluca 2021 Synthetic genomics for curing genetic diseases Progress in Molecular Biology and Translational Science T 182 s 477 520 doi 10 1016 bs pmbts 2021 02 002 ISSN 1878 0814 PMID 34175051 Procitovano 25 lyutogo 2023 Simsek Emrah Yao Yi Lee Dongheon You Lingchong 2023 06 Toward predictive engineering of gene circuits Trends in Biotechnology T 41 6 s 760 768 doi 10 1016 j tibtech 2022 11 001 ISSN 0167 7799 Procitovano 10 chervnya 2023 Hotz Robert Lee Scientists Create Synthetic Organism Wall Street Journal ISSN 0099 9660 Procitovano 23 veresnya 2015 Synthetic Genomics Inc Our Business www syntheticgenomics com Procitovano 26 veresnya 2015 Montague Michael G Lartigue Carole Vashee Sanjay 1 sichnya 2012 Synthetic genomics potential and limitations Current Opinion in Biotechnology 23 5 659 665 doi 10 1016 j copbio 2012 01 014 PMID 22342755 Montague Michael G Lartigue Carole Vashee Sanjay 2012 Synthetic genomics potential and limitations Current Opinion in Biotechnology 23 5 659 665 doi 10 1016 j copbio 2012 01 014 PMID 22342755 Gibson Daniel 2011 Synthetic Biology Part B Computer Aided Design and DNA Assembly Chapter Fifteen Enzymatic Assembly of Overlapping DNA Fragments Academic Press s 349 361 ISBN 978 0 12 385120 8 Stemmer Willem P C Crameri Andreas Ha Kim D Brennan Thomas M Heyneker Herbert L 16 zhovtnya 1995 Single step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides Gene 164 1 49 53 doi 10 1016 0378 1119 95 00511 4 PMID 7590320 Smith Hamilton O Hutchison Clyde A Pfannkoch Cynthia Venter J Craig 23 grudnya 2003 Generating a synthetic genome by whole genome assembly fX174 bacteriophage from synthetic oligonucleotides Proceedings of the National Academy of Sciences 100 26 15440 15445 Bibcode 2003PNAS 10015440S doi 10 1073 pnas 2237126100 ISSN 0027 8424 PMC 307586 PMID 14657399 Gibson Daniel G Young Lei Chuang Ray Yuan Venter J Craig Hutchison Clyde A Smith Hamilton O 12 kvitnya 2009 Enzymatic assembly of DNA molecules up to several hundred kilobases Nature Methods 6 5 343 345 doi 10 1038 nmeth 1318 PMID 19363495 Kouprina Natalay Larionov Vladimir 1 grudnya 2003 Exploiting the yeast Saccharomyces cerevisiae for the study of the organization and evolution of complex genomes FEMS Microbiology Reviews 27 5 629 649 doi 10 1016 S0168 6445 03 00070 6 ISSN 1574 6976 PMID 14638416 Marsischky Gerald LaBaer Joshua 15 zhovtnya 2004 Many Paths to Many Clones A Comparative Look at High Throughput Cloning Methods Genome Research 14 10b 2020 2028 doi 10 1101 gr 2528804 ISSN 1088 9051 PMID 15489321 Gibson Daniel G Benders Gwynedd A Andrews Pfannkoch Cynthia Denisova Evgeniya A Baden Tillson Holly Zaveri Jayshree Stockwell Timothy B Brownley Anushka Thomas David W 29 lyutogo 2008 Complete Chemical Synthesis Assembly and Cloning of a Mycoplasma genitalium Genome Science 319 5867 1215 1220 Bibcode 2008Sci 319 1215G doi 10 1126 science 1151721 ISSN 0036 8075 PMID 18218864 Gibson Daniel G Glass John I Lartigue Carole Noskov Vladimir N Chuang Ray Yuan Algire Mikkel A Benders Gwynedd A Montague Michael G Ma Li 2 lipnya 2010 Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome Science 329 5987 52 56 Bibcode 2010Sci 329 52G doi 10 1126 science 1190719 ISSN 0036 8075 PMID 20488990 Malyshev Denis A Dhami Kirandeep Quach Henry T Lavergne Thomas Ordoukhanian Phillip 24 lipnya 2012 Efficient and sequence independent replication of DNA containing a third base pair establishes a functional six letter genetic alphabet Proceedings of the National Academy of Sciences of the United States of America 109 30 12005 12010 Bibcode 2012PNAS 10912005M doi 10 1073 pnas 1205176109 PMC 3409741 PMID 22773812 Malyshev Denis A Dhami Kirandeep Lavergne Thomas Chen Tingjian Dai Nan Foster Jeremy M Correa Ivan R Romesberg Floyd E 7 travnya 2014 A semi synthetic organism with an expanded genetic alphabet Nature 509 7500 385 8 Bibcode 2014Natur 509 385M doi 10 1038 nature13314 PMC 4058825 PMID 24805238 Callaway Ewan 7 travnya 2014 Scientists Create First Living Organism With Artificial DNA Nature News Huffington Post Procitovano 8 travnya 2014 BRADLEY J FIKES 7 travnya 2014 Life engineered with expanded DNA code San Diego Union Tribune amer Procitovano 25 lyutogo 2023 Sample Ian 7 travnya 2014 First life forms to pass on artificial DNA engineered by US scientists The Guardian Procitovano 8 travnya 2014 Pollack Andrew 7 travnya 2014 Scientists Add Letters to DNA s Alphabet Raising Hope and Fear New York Times Procitovano 8 travnya 2014 ETH Zurich 1 kvitnya 2019 First bacterial genome created entirely with a computer Venetz Jonathan E ta in 1 kvitnya 2019 Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality Proceedings of the National Academy of Sciences of the United States of America 116 16 8070 8079 doi 10 1073 pnas 1818259116 PMC 6475421 PMID 30936302