Цю статтю написано занадто професійним зі специфічною термінологією, що може бути незрозумілим для більшості читачів. (Квітень 2021) |
Пристосо́вування о́бласті ви́значення (англ. domain adaptation) — це область, пов'язана з машинним та передавальним навчанням. Цей сценарій виникає тоді, коли ми маємо на меті навчання з первинного розподілу даних ефективної моделі на іншому (але пов'язаному) цільовому розподілі даних. Наприклад, одна з підзадач поширеної задачі фільтрування спаму полягає в пристосовуванні моделі від одного користувача (первинний розподіл) до нового користувача, який отримує суттєво відмінні електронні листи (цільовий розподіл). Пристосовування області визначення виявилося корисним і для навчання непов'язаних джерел. Зауважте, що, коли доступно більше одного первинного розподілу, цю задачу називають багатоджерельним пристосовуванням області визначення (англ. multi-source domain adaptation).
Огляд
Пристосовування області визначення — це здатність застосовувати алгоритм, навчений в одній або декількох «первинних областях визначення» (англ. "source domains"), до іншої (але пов'язаної) «цільової області визначення» (англ. "target domain"). Пристосовування області визначення є підкатегорією передавального навчання. У пристосовуванні області визначення як первинні, так і цільові області визначення мають один і той же простір ознак (але різні розподіли), а передавальне навчання, на відміну від цього, включає також і випадки, коли простір ознак цільової області визначення від первинного простору чи просторів ознак відрізняється.
Зсув області визначення
Зсув о́бласті ви́значення (англ. domain shift), або розпо́діловий зсув (англ. distributional shift), — це зміна в розподілі даних між тренувальним набором даних алгоритму та набором даних, з яким він стикається при розгортанні. Ці зсуви областей визначення є поширеними в практичному застосуванні штучного інтелекту. Звичайні алгоритми машинного навчання часто погано пристосовуються до зсувів областей визначення. Сучасна спільнота машинного навчання має багато різних стратегій намагання досягнення кращого пристосування області визначення.
Приклади
- Алгоритмові, натренованому на новинах, може довестися пристосовуватися до нового набору біомедичних документів.
- Спамовий фільтр, натренований на певній групі користувачів електронної пошти під час тренування, при розгортанні мусить пристосовуватися до нового цільового користувача.
- Застосування алгоритмів встановлювання діагнозу за допомогою ШІ, натренованих на мічених даних, пов'язаних із попередніми захворюваннями, до нових немічених даних, пов'язаних із пандемією COVID-19.
- Раптові соціальні зміни, такі як спалах пандемії, можуть створювати зсув області визначення та спричинювати збої алгоритмів машинного навчання, натренованих на вже застарілих даних про споживачів, і вимагати втручання.
До інших застосувань належать встановлювання положення за Wi-Fi та багато аспектів комп'ютерного бачення.
Формальний виклад
Нехай є простором входу (або простором опису, англ. input space, description space), і нехай є простором виходу (або простором міток, англ. output space, label space). Завданням алгоритму машинного навчання є навчитися математичної моделі (гіпотези) , здатної приписувати мітку з прикладові з . Навчання цієї моделі відбувається з навчальної вибірки .
Зазвичай за керованого навчання (без пристосовування області визначення) ми виходимо з того, що ці зразки витягуються н. о. р. з розподілу носія (невідомого та незмінного). Завдання відтак полягає в тім, щоби навчитися (з ) такої , щоби вона припускалася найменшої можливої похибки при міченні нових зразків, що надходять із розподілу .
Головна відмінність між керованим навчанням та пристосовуванням області визначення полягає в тім, що в другій ситуації ми вивчаємо два різні (але пов'язані) розподіли і на []. Завдання пристосовування області визначення відтак складається з передавання знань з первинної області визначення до цільової . Метою відтак є навчитися такої (з мічених або немічених зразків, що надходять із двох областей визначення), щоби вона припускалася якомога меншої похибки на цільовій області визначення [].
Головною проблемою є наступна: якщо модель навчається з первинної області визначення, якою буде її здатність правильно мітити дані, що надходять із цільової області визначення?
Різні типи пристосовування області визначення
Існує кілька контекстів пристосовування області визначення. Вони відрізняються інформацією, яка враховується для цільової області визначення.
- Спонта́нне пристосо́вування о́бласті ви́значення (англ. unsupervised domain adaptation): навчальна вибірка містить набір мічених первинних зразків, набір немічених первинних зразків, та набір немічених цільових зразків.
- Напівавтомати́чне присто́совування о́бласті ви́значення (англ. semi-supervised domain adaptation): у цій ситуації ми також розглядаємо «невеликий» набір мічених цільових зразків.
- Керо́ване пристосо́вування о́бласті ви́значення (англ. supervised domain adaptation): усі зразки, що розглядаються, мають бути міченими.
Чотири алгоритмічні принципи
Алгоритми перезважування
Мета полягає в перезважуванні первинної міченої вибірки таким чином, щоби вона «виглядала як» цільова вибірка (з точки зору розгляданої міри похибки).
Ітеративні алгоритми
Цей метод для пристосовування полягає в ітеративному «автоматичному міченні» цільових зразків. Принцип є простим:
- модель навчається з мічених зразків;
- автоматично мітить деякі цільові зразки;
- нова модель навчається з нових мічених зразків.
Зауважте, що існують й інші ітеративні підходи, але вони зазвичай потребують мічених цільових зразків.
Пошук спільного простору подань
Метою є знайти або побудувати спільний простір подань (англ. common representation space) для двох областей визначення. Мета полягає в отриманні простору, в якому ці області визначення перебуватимуть близько одна до одної, за умови збереження доброї продуктивності в первинній задачі маркування. Цього можливо досягати за допомогою застосування методів [en], де подання ознак із вибірок у різних областях визначення заохочуються бути нерозрізненними.
Ієрархічна баєсова модель
Метою є побудувати баєсову ієрархічну модель , що є по суті множниковою моделлю для чисел , щоби вивести не залежні від області визначення латентні подання, які можуть містити як специфічні для областей визначення, так і глобально спільні латентні множники.
Примітки
- Redko, Ievgen; Morvant, Emilie; Habrard, Amaury; Sebban, Marc; Bennani, Younès (2019). . ISTE Press - Elsevier. с. 187. ISBN . Архів оригіналу за 12 квітня 2021. Процитовано 12 квітня 2021. (англ.)
- Bridle, John S.; Cox, Stephen J (1990). RecNorm: Simultaneous normalisation and classification applied to speech recognition. Conference on Neural Information Processing Systems (NIPS). с. 234—240. (англ.)
- Ben-David, Shai; Blitzer, John; Crammer, Koby; Kulesza, Alex; Pereira, Fernando; Wortman Vaughan, Jennifer (2010). (PDF). Machine Learning. 79 (1–2): 151—175. doi:10.1007/s10994-009-5152-4. Архів оригіналу (PDF) за 11 жовтня 2021. Процитовано 12 квітня 2021. (англ.)
- Hajiramezanali, Ehsan; Siamak Zamani Dadaneh; Karbalayghareh, Alireza; Zhou, Mingyuan; Qian, Xiaoning (2018). Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data. arXiv:1810.09433 [stat.ML]. (англ.)
- Crammer, Koby; Kearns, Michael; Wortman, Jeniifer (2008). (PDF). Journal of Machine Learning Research. 9: 1757—1774. Архів оригіналу (PDF) за 12 квітня 2021. Процитовано 12 квітня 2021. (англ.)
- Sun, Shiliang; Shi, Honglei; Wu, Yuanbin (July 2015). A survey of multi-source domain adaptation. Information Fusion. 24: 84—92. doi:10.1016/j.inffus.2014.12.003. (англ.)
- Sun, Baochen, Jiashi Feng, and Kate Saenko. «Return of frustratingly easy domain adaptation.» In Thirtieth AAAI Conference on Artificial Intelligence. 2016. (англ.)
- Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. «Concrete problems in AI safety.» arXiv preprint arXiv:1606.06565 (2016). (англ.)
- Daumé III, Hal. «Frustratingly easy domain adaptation.» arXiv preprint arXiv:0907.1815 (2009). (англ.)
- Ben-David, Shai, John Blitzer, Koby Crammer, and Fernando Pereira. «Analysis of representations for domain adaptation.» In Advances in neural information processing systems, pp. 137—144. 2007. (англ.)
- Hu, Yipeng; Jacob, Joseph; Parker, Geoffrey J. M.; Hawkes, David J.; Hurst, John R.; Stoyanov, Danail (June 2020). . Nature Machine Intelligence (англ.). 2 (6): 298—300. doi:10.1038/s42256-020-0185-2. ISSN 2522-5839. Архів оригіналу за 25 лютого 2021. Процитовано 12 квітня 2021. (англ.)
- Matthews, Dylan (26 березня 2019). . Vox (англ.). Архів оригіналу за 27 травня 2020. Процитовано 21 червня 2020. (англ.)
- . MIT Technology Review (англ.). 11 травня 2020. Архів оригіналу за 22 червня 2020. Процитовано 21 червня 2020. (англ.)
- Huang, Jiayuan; Smola, Alexander J.; Gretton, Arthur; Borgwardt, Karster M.; Schölkopf, Bernhard (2006). Correcting Sample Selection Bias by Unlabeled Data. Conference on Neural Information Processing Systems (NIPS). с. 601—608. (англ.)
- Shimodaira, Hidetoshi (2000). Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference. 90 (2): 227—244. doi:10.1016/S0378-3758(00)00115-4. (англ.)
- . ISBN .
{{}}
: Пропущений або порожній|title=
() (англ.) - Arief-Ang, I.B.; Hamilton, M.; Salim, F.D. (1 грудня 2018). A Scalable Room Occupancy Prediction with Transferable Time Series Decomposition of CO2 Sensor Data. ACM Transactions on Sensor Networks. 14 (3–4): 21:1–21:28. doi:10.1145/3217214. (англ.)
- Ganin, Yaroslav; Ustinova, Evgeniya; Ajakan, Hana; Germain, Pascal; Larochelle, Hugo; Laviolette, François; Marchand, Mario; Lempitsky, Victor (2016). (PDF). Journal of Machine Learning Research. 17: 1—35. Архів оригіналу (PDF) за 12 квітня 2021. Процитовано 12 квітня 2021. (англ.)
- Hajiramezanali, Ehsan; Siamak Zamani Dadaneh; Karbalayghareh, Alireza; Zhou, Mingyuan; Qian, Xiaoning (2017). Addressing Appearance Change in Outdoor Robotics with Adversarial Domain Adaptation. arXiv:1703.01461 [cs.RO]. (англ.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Cyu stattyu napisano zanadto profesijnim stilem zi specifichnoyu terminologiyeyu sho mozhe buti nezrozumilim dlya bilshosti chitachiv Vi mozhete dopomogti vdoskonaliti cyu stattyu zrobivshi yiyi zrozumiloyu dlya nespecialistiv bez vtrat zmistu Mozhlivo storinka obgovorennya mistit zauvazhennya shodo potribnih zmin Kviten 2021 Pristoso vuvannya o blasti vi znachennya angl domain adaptation ce oblast pov yazana z mashinnim ta peredavalnim navchannyam Cej scenarij vinikaye todi koli mi mayemo na meti navchannya z pervinnogo rozpodilu danih efektivnoyi modeli na inshomu ale pov yazanomu cilovomu rozpodili danih Napriklad odna z pidzadach poshirenoyi zadachi filtruvannya spamu polyagaye v pristosovuvanni modeli vid odnogo koristuvacha pervinnij rozpodil do novogo koristuvacha yakij otrimuye suttyevo vidminni elektronni listi cilovij rozpodil Pristosovuvannya oblasti viznachennya viyavilosya korisnim i dlya navchannya nepov yazanih dzherel Zauvazhte sho koli dostupno bilshe odnogo pervinnogo rozpodilu cyu zadachu nazivayut bagatodzherelnim pristosovuvannyam oblasti viznachennya angl multi source domain adaptation Vidminnosti mizh zvichajnoyu postanovkoyu mashinnogo navchannya ta peredavalnim navchannyam i poziciyuvannya pristosovuvannya oblasti viznachennya OglyadPristosovuvannya oblasti viznachennya ce zdatnist zastosovuvati algoritm navchenij v odnij abo dekilkoh pervinnih oblastyah viznachennya angl source domains do inshoyi ale pov yazanoyi cilovoyi oblasti viznachennya angl target domain Pristosovuvannya oblasti viznachennya ye pidkategoriyeyu peredavalnogo navchannya U pristosovuvanni oblasti viznachennya yak pervinni tak i cilovi oblasti viznachennya mayut odin i toj zhe prostir oznak ale rizni rozpodili a peredavalne navchannya na vidminu vid cogo vklyuchaye takozh i vipadki koli prostir oznak cilovoyi oblasti viznachennya vid pervinnogo prostoru chi prostoriv oznak vidriznyayetsya Zsuv oblasti viznachennya Zsuv o blasti vi znachennya angl domain shift abo rozpo dilovij zsuv angl distributional shift ce zmina v rozpodili danih mizh trenuvalnim naborom danih algoritmu ta naborom danih z yakim vin stikayetsya pri rozgortanni Ci zsuvi oblastej viznachennya ye poshirenimi v praktichnomu zastosuvanni shtuchnogo intelektu Zvichajni algoritmi mashinnogo navchannya chasto pogano pristosovuyutsya do zsuviv oblastej viznachennya Suchasna spilnota mashinnogo navchannya maye bagato riznih strategij namagannya dosyagnennya krashogo pristosuvannya oblasti viznachennya Prikladi Algoritmovi natrenovanomu na novinah mozhe dovestisya pristosovuvatisya do novogo naboru biomedichnih dokumentiv Spamovij filtr natrenovanij na pevnij grupi koristuvachiv elektronnoyi poshti pid chas trenuvannya pri rozgortanni musit pristosovuvatisya do novogo cilovogo koristuvacha Zastosuvannya algoritmiv vstanovlyuvannya diagnozu za dopomogoyu ShI natrenovanih na michenih danih pov yazanih iz poperednimi zahvoryuvannyami do novih nemichenih danih pov yazanih iz pandemiyeyu COVID 19 Raptovi socialni zmini taki yak spalah pandemiyi mozhut stvoryuvati zsuv oblasti viznachennya ta sprichinyuvati zboyi algoritmiv mashinnogo navchannya natrenovanih na vzhe zastarilih danih pro spozhivachiv i vimagati vtruchannya Do inshih zastosuvan nalezhat vstanovlyuvannya polozhennya za Wi Fi ta bagato aspektiv komp yuternogo bachennya Formalnij vikladNehaj X displaystyle X ye prostorom vhodu abo prostorom opisu angl input space description space i nehaj Y displaystyle Y ye prostorom vihodu abo prostorom mitok angl output space label space Zavdannyam algoritmu mashinnogo navchannya ye navchitisya matematichnoyi modeli gipotezi h X Y displaystyle h X to Y zdatnoyi pripisuvati mitku z Y displaystyle Y prikladovi z X displaystyle X Navchannya ciyeyi modeli vidbuvayetsya z navchalnoyi vibirki S xi yi X Y i 1m displaystyle S x i y i in X times Y i 1 m Zazvichaj za kerovanogo navchannya bez pristosovuvannya oblasti viznachennya mi vihodimo z togo sho ci zrazki xi yi S displaystyle x i y i in S vityaguyutsya n o r z rozpodilu DS displaystyle D S nosiya X Y displaystyle X times Y nevidomogo ta nezminnogo Zavdannya vidtak polyagaye v tim shobi navchitisya z S displaystyle S takoyi h displaystyle h shobi vona pripuskalasya najmenshoyi mozhlivoyi pohibki pri michenni novih zrazkiv sho nadhodyat iz rozpodilu DS displaystyle D S Golovna vidminnist mizh kerovanim navchannyam ta pristosovuvannyam oblasti viznachennya polyagaye v tim sho v drugij situaciyi mi vivchayemo dva rizni ale pov yazani rozpodili DS displaystyle D S i DT displaystyle D T na X Y displaystyle X times Y dzherelo Zavdannya pristosovuvannya oblasti viznachennya vidtak skladayetsya z peredavannya znan z pervinnoyi oblasti viznachennya DS displaystyle D S do cilovoyi DT displaystyle D T Metoyu vidtak ye navchitisya takoyi h displaystyle h z michenih abo nemichenih zrazkiv sho nadhodyat iz dvoh oblastej viznachennya shobi vona pripuskalasya yakomoga menshoyi pohibki na cilovij oblasti viznachennya DT displaystyle D T dzherelo Golovnoyu problemoyu ye nastupna yaksho model navchayetsya z pervinnoyi oblasti viznachennya yakoyu bude yiyi zdatnist pravilno mititi dani sho nadhodyat iz cilovoyi oblasti viznachennya Rizni tipi pristosovuvannya oblasti viznachennyaIsnuye kilka kontekstiv pristosovuvannya oblasti viznachennya Voni vidriznyayutsya informaciyeyu yaka vrahovuyetsya dlya cilovoyi oblasti viznachennya Sponta nne pristoso vuvannya o blasti vi znachennya angl unsupervised domain adaptation navchalna vibirka mistit nabir michenih pervinnih zrazkiv nabir nemichenih pervinnih zrazkiv ta nabir nemichenih cilovih zrazkiv Napivavtomati chne pristo sovuvannya o blasti vi znachennya angl semi supervised domain adaptation u cij situaciyi mi takozh rozglyadayemo nevelikij nabir michenih cilovih zrazkiv Kero vane pristoso vuvannya o blasti vi znachennya angl supervised domain adaptation usi zrazki sho rozglyadayutsya mayut buti michenimi Chotiri algoritmichni principiAlgoritmi perezvazhuvannya Meta polyagaye v perezvazhuvanni pervinnoyi michenoyi vibirki takim chinom shobi vona viglyadala yak cilova vibirka z tochki zoru rozglyadanoyi miri pohibki Iterativni algoritmi Cej metod dlya pristosovuvannya polyagaye v iterativnomu avtomatichnomu michenni cilovih zrazkiv Princip ye prostim model h displaystyle h navchayetsya z michenih zrazkiv h displaystyle h avtomatichno mitit deyaki cilovi zrazki nova model navchayetsya z novih michenih zrazkiv Zauvazhte sho isnuyut j inshi iterativni pidhodi ale voni zazvichaj potrebuyut michenih cilovih zrazkiv Poshuk spilnogo prostoru podan Metoyu ye znajti abo pobuduvati spilnij prostir podan angl common representation space dlya dvoh oblastej viznachennya Meta polyagaye v otrimanni prostoru v yakomu ci oblasti viznachennya perebuvatimut blizko odna do odnoyi za umovi zberezhennya dobroyi produktivnosti v pervinnij zadachi markuvannya Cogo mozhlivo dosyagati za dopomogoyu zastosuvannya metodiv en de podannya oznak iz vibirok u riznih oblastyah viznachennya zaohochuyutsya buti nerozriznennimi Iyerarhichna bayesova model Metoyu ye pobuduvati bayesovu iyerarhichnu model p n displaystyle p n sho ye po suti mnozhnikovoyu modellyu dlya chisel n displaystyle n shobi vivesti ne zalezhni vid oblasti viznachennya latentni podannya yaki mozhut mistiti yak specifichni dlya oblastej viznachennya tak i globalno spilni latentni mnozhniki PrimitkiRedko Ievgen Morvant Emilie Habrard Amaury Sebban Marc Bennani Younes 2019 ISTE Press Elsevier s 187 ISBN 9781785482366 Arhiv originalu za 12 kvitnya 2021 Procitovano 12 kvitnya 2021 angl Bridle John S Cox Stephen J 1990 RecNorm Simultaneous normalisation and classification applied to speech recognition Conference on Neural Information Processing Systems NIPS s 234 240 angl Ben David Shai Blitzer John Crammer Koby Kulesza Alex Pereira Fernando Wortman Vaughan Jennifer 2010 PDF Machine Learning 79 1 2 151 175 doi 10 1007 s10994 009 5152 4 Arhiv originalu PDF za 11 zhovtnya 2021 Procitovano 12 kvitnya 2021 angl Hajiramezanali Ehsan Siamak Zamani Dadaneh Karbalayghareh Alireza Zhou Mingyuan Qian Xiaoning 2018 Bayesian multi domain learning for cancer subtype discovery from next generation sequencing count data arXiv 1810 09433 stat ML angl Crammer Koby Kearns Michael Wortman Jeniifer 2008 PDF Journal of Machine Learning Research 9 1757 1774 Arhiv originalu PDF za 12 kvitnya 2021 Procitovano 12 kvitnya 2021 angl Sun Shiliang Shi Honglei Wu Yuanbin July 2015 A survey of multi source domain adaptation Information Fusion 24 84 92 doi 10 1016 j inffus 2014 12 003 angl Sun Baochen Jiashi Feng and Kate Saenko Return of frustratingly easy domain adaptation In Thirtieth AAAI Conference on Artificial Intelligence 2016 angl Amodei Dario Chris Olah Jacob Steinhardt Paul Christiano John Schulman and Dan Mane Concrete problems in AI safety arXiv preprint arXiv 1606 06565 2016 angl Daume III Hal Frustratingly easy domain adaptation arXiv preprint arXiv 0907 1815 2009 angl Ben David Shai John Blitzer Koby Crammer and Fernando Pereira Analysis of representations for domain adaptation In Advances in neural information processing systems pp 137 144 2007 angl Hu Yipeng Jacob Joseph Parker Geoffrey J M Hawkes David J Hurst John R Stoyanov Danail June 2020 Nature Machine Intelligence angl 2 6 298 300 doi 10 1038 s42256 020 0185 2 ISSN 2522 5839 Arhiv originalu za 25 lyutogo 2021 Procitovano 12 kvitnya 2021 angl Matthews Dylan 26 bereznya 2019 Vox angl Arhiv originalu za 27 travnya 2020 Procitovano 21 chervnya 2020 angl MIT Technology Review angl 11 travnya 2020 Arhiv originalu za 22 chervnya 2020 Procitovano 21 chervnya 2020 angl Huang Jiayuan Smola Alexander J Gretton Arthur Borgwardt Karster M Scholkopf Bernhard 2006 Correcting Sample Selection Bias by Unlabeled Data Conference on Neural Information Processing Systems NIPS s 601 608 angl Shimodaira Hidetoshi 2000 Improving predictive inference under covariate shift by weighting the log likelihood function Journal of Statistical Planning and Inference 90 2 227 244 doi 10 1016 S0378 3758 00 00115 4 angl ISBN 978 1 4503 5544 5 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite conference title Shablon Cite conference cite conference a Propushenij abo porozhnij title dovidka angl Arief Ang I B Hamilton M Salim F D 1 grudnya 2018 A Scalable Room Occupancy Prediction with Transferable Time Series Decomposition of CO2 Sensor Data ACM Transactions on Sensor Networks 14 3 4 21 1 21 28 doi 10 1145 3217214 angl Ganin Yaroslav Ustinova Evgeniya Ajakan Hana Germain Pascal Larochelle Hugo Laviolette Francois Marchand Mario Lempitsky Victor 2016 PDF Journal of Machine Learning Research 17 1 35 Arhiv originalu PDF za 12 kvitnya 2021 Procitovano 12 kvitnya 2021 angl Hajiramezanali Ehsan Siamak Zamani Dadaneh Karbalayghareh Alireza Zhou Mingyuan Qian Xiaoning 2017 Addressing Appearance Change in Outdoor Robotics with Adversarial Domain Adaptation arXiv 1703 01461 cs RO angl