Магнітний напівпровідник — напівпровідниковий матеріал, що має властивості феромагнетика (або схожого на феромагнетизм відгуку). У приладах ці матеріали можуть забезпечити новий тип контролю провідності. Тоді як традиційна електроніка використовує для контролю носіїв заряду напівпровідники n- чи p-типу), практичне застосування магнітних напівпровідників дозволило б також контроль спінового стану. Це могло б в принципі забезпечити майже повну спінову поляризацію (на відміну від заліза та інших металів, що забезпечують спінову поляризацію тільки на ~50%), що було б важливим для спінтроніки, наприклад у .
Попри те, що традиційні магнітні матеріали, такі як магнетит, є часто напівровідниками (магнетит — напівметал із забороненою зоною 0,14 еВ завширшки), матеріали, що могли б насправді називатися магнітними напівровідниками і знайти широке застосування, повинні бути схожими на добре відомі напівпровідники. З огляду на це набули популярності дослідження розбавлених магнітних напівровідників або як їх ще називають напівмагнітних напівпровідників. У своїй основі це традиційні напівпровідники, леговані атомами перехідних металів замість, або додатково до звичних електронно активних домішок. Інтерес до них зумовлений тим, що вони мають унікальні властивості для спінтроніки й можуть знайти технологічне застосування. Леговані широкозонні напівпровідники на зразом оксидів металів, таких як оксид цинку (ZnO) та оксид титану (TiO2) вважаються найкращими кандидатами для промислового застосування напівмагнітних напівпровідників завдяки своїй багатофункціональності в магнітооптичних розробках. Зокрема, напівмагнітний напівпровідник на основі ZnO прозорий в оптичному діапазоні та проявляє п'єзоелектричні властивості, завдяки чому збудив значний інтерес як сильний кандидат матеріалу дя спінових транзисторів та спін-поляризованих світлодіодів, тоді як легований міддю TiO2 в анатазній фазі також, як передбачають, є перспективним напівмагнітним напівпровідником.
з колегами з Університету Тохоку першими виміряли феромагнетизм у легованих перехідними металами традиційних напівпровідниках на зразок арсеніду індію та арсеніду галію з домішкою Мангану ([en]). Ці матеріали мали доволі високу температуру Кюрі (хоча все ще нижче кімнатної), що росла з концентацією дірок. Відтоді, феромагнітний відгук знайшли в різних інших напівпровідниках, легованих різними іншими перехідними металами.
Теорія
Дітль з колегами передбачили вперше теоретично в модифікованій моделі Зенера, що феромагнетизм при кімнатній температурі повинен існувати в сильно легованому ZnO p-типу. Оскільки магнітний Co добре розчиняється в ZnO, система ZnO:Co найбільше вивчалася в застосуваннях, що вимагали феромагнетизм при кімнатній температурі. Новіші розрахунки з використанням теорії функціоналу густини and experimental, показали, що в ZnO n-типу, легованому кобальтом теж повинен спостерігатися феромагнетизм при кімнатній температурі. Також вивчався ZnO легований іншими перехідними металами: Ванадієм, Манганом та міддю.
Матеріали
Технологія виготовлення напівмагнітних напівпровідників залежить від розчинності домішок в основному матеріалі в умовах термічної рівноваги. Наприклад, розчинність багатьох домішок в оксиді цинку достатня для виготовлення матеріалу в об'ємі, тоді як інші матеріали мають настільки малу розчинність домішок, що приготування зразків із достатньою концентрацією домішок вимагає нерівноважних умов, наприклад вирощування тонких плівок.
Лавина досліджень в останні роки пролила світло на важливі фактори, необхідні для отримання напівмагнітних напівпровідників із високою температурою Кюрі (кімнатні температури й вище) й змогла прояснити неоднозначність результатів та погану відтворюваність магнітних власливостей одного й того ж матеріалу. Справді, перше значне відкриття в цій області належало Т. Сторі зі співробітниками, які показали, що температуру Кюрі легованого манганом Pb1−xSnxTe можна контролювати густиною носіїв заряду. Теорія Дітля вимагала від носіїв заряду, в конкретному випадку дірок, відігравати роль посередника в утворенні магнітного зв'язку між домішками мангану в прототипному напівмагнітному напівпровіднику — легованому мангаром арсеніді галію. Якщо концентрація дірок в магнітному напівпровіднику недостатня, температура Кюрі буде дуже низькою або матеріал буде парамагнітним. Однак, коли концентрація дірок висока (~1020 cm−3), температура Кюрі зросте до 100-200 K.
Новітні дослідження групи Деніела Геймліна з Вашингтонського університету пролили світло на важливість, наприклад, міжвузлових атомів цинку (мілкого донора) для досягнення феромагнетизму у легованому кобальтом ZnO з високим значенням температури Кюрі.
Приклади напівмагнітних напівпровідникових матеріалів включають:
- Леговані манганом арсенід індію та арсенід галію (GaMnAs) з температурами Кюрі в діапазонах 50–100 K та 100–200 K, відповідно.
- Легований манганом , що стає феромагнітним навіть при кімнатній температурі, і навіть при концентрації мангану меншій від 1%.
- Оксиди
- Легований манганом та залізом , феромагнітний при кімнатній температурі
- Оксид цинку
- Легований манганом оксид цинку
- Легований кобальтом оксид цинку n-типу
- Оксид магнію:
- Прозорі плівки MgO p-type з оксигенними вакансіями, водночас феромагнетики та мемристори з кількома рівнями перемикань.
- Діоксид титану:
- Легований кобальтом діоксид титану (як рутил так і анатаз), феромагнетик при температурах понад 400 K.
- Легований хромом рутил, феромагнетик при температурах понад 400 K.
- Легований залізом рутил та легований залізом анатаз, феромагнетики при кімнатній температурі.
- Легований міддю анатаз
- Легований нікелем анатаз
-
- Легований манганом діоксид олова, температура Кюрі 340 K
- Легований залізом , температура Кюрі 340 K
- Легований стронцієм діоксид олова SrSnO2 — напівмагнітний напівпровідник. Синтезується у вигляді епітаксіальної тонкої плівки на кремнієвій підкладці.
- , температура Кюрі 69 K. Її можна збільшити вдвічі легуванням (наприклад, кисневими вакансіями, гадолінієм).
- Нітриди
- Легований хромом .
Виноски
- Furdyna, J.K. (1988). Diluted magnetic semiconductors. J. Appl. Phys. 64: R29. doi:10.1063/1.341700.
- Ohno, H. (1998). Making Nonmagnetic Semiconductors Ferromagnetic. Science. 281: 951. doi:10.1126/science.281.5379.951.
- Ogale, S.B (2010). Dilute doping, defects, and ferromagnetism in metal oxide systems. Advanced Materials. 22 (29): 3125–3155. doi:10.1002/adma.200903891.
- Assadi, M.H.N; Hanaor, D.A.H (2013). Theoretical study on copper's energetics and magnetism in TiO2 polymorphs (PDF). Journal of Applied Physics. 113 (23): 233913. doi:10.1063/1.4811539. Архів оригіналу (PDF) за 4 червня 2019. Процитовано 18 квітня 2017.
- Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. (February 2000). Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 287: 1019. doi:10.1126/science.287.5455.1019. PMID 10669409.
- Pearton, S.J.; Abernathy, C.R.; Overberg, M.E.; Thaler, G.T.; Norton, D.P.; Theodoropoulou, N.; Hebard, A.F.; Park, Y.D.; Ren, F.; Kim, J.; Boatner, L.A. (2003). Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93 (1): 1—13. doi:10.1063/1.1517164.
- Sato, K.; Katayama-Yoshida, H. (2000). Material Design for Transparent Ferromagnets with ZnO-Based Magnetic Semiconductors. Jap. J. Appl. Phys. 39: L555. doi:10.1143/jjap.39.l555.
- Sato, K.; Katayama-Yoshida, H. (2001). Stabilization of Ferromagnetic States by Electron Doping in Fe-, Co- or Ni-Doped ZnO. Jap. J. Appl. Phys. 40: L334. doi:10.1143/jjap.40.l334.
- Ueda, K.; Tabata, H.; Kawai, T. (2001). Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79: 988. doi:10.1063/1.1384478.
- Prellier, W.; Fouchet, A.; Mercey, B.; Ch; Raveau, B. (2003). Laser ablation of Co:ZnO films deposited from Zn and Co metal targets on (0001) Al2O3 substrates. Appl. Phys. Lett. 82: 3490. doi:10.1063/1.1578183.
- Story, T.; Gała̧zka, R.; Frankel, R.; Wolff, P. (1986). Carrier-concentration–induced ferromagnetism in PbSnMnTe. Physical Review Letters. 56 (7): 777. Bibcode:1986PhRvL..56..777S. doi:10.1103/PhysRevLett.56.777. PMID 10033282.
- Dietl, T.; Ohno, H; Matsukura, F; Cibert, J; Ferrand, D (2000). Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science. 287 (5455): 1019—1022. Bibcode:2000Sci...287.1019D. doi:10.1126/science.287.5455.1019. PMID 10669409.
- Kittilstved, Kevin; Schwartz, Dana; Tuan, Allan; Heald, Steve; Chambers, Scott; Gamelin, Daniel (2006). Direct Kinetic Correlation of Carriers and Ferromagnetism in Co2+: ZnO. Physical Review Letters. 97 (3). Bibcode:2006PhRvL..97c7203K. doi:10.1103/PhysRevLett.97.037203.
- Green pigment spins chip promise. BBC News. 9 серпня 2006. Архів оригіналу за 6 серпня 2017. Процитовано 19 вересня 2010.
- Muons in Magnetic Semiconductors. Triumf.info. Архів оригіналу за 21 листопада 2008. Процитовано 19 вересня 2010.
- Fukumura, T; Toyosaki, H; Yamada, Y (2005). Magnetic oxide semiconductors. Semiconductor Science and Technology. 20 (4): S103—S111. arXiv:cond-mat/0504168. Bibcode:2005SeScT..20S.103F. doi:10.1088/0268-1242/20/4/012.
- Martínez-Boubeta, C.; Beltrán, J. I.; Balcells, Ll.; Konstantinović, Z.; Valencia, S.; Schmitz, D.; Arbiol, J.; Estrade, S.; Cornil, J. (8 липня 2010). Ferromagnetism in transparent thin films of MgO. Physical Review B. 82 (2): 024405. Bibcode:2010PhRvB..82b4405M. doi:10.1103/PhysRevB.82.024405.
- Jambois, O.; Carreras, P.; Antony, A.; Bertomeu, J.; Martínez-Boubeta, C. (1 грудня 2011). Resistance switching in transparent magnetic MgO films. Solid State Communications. 151 (24): 1856—1859. Bibcode:2011SSCom.151.1856J. doi:10.1016/j.ssc.2011.10.009.
- New room-temperature magnetic semiconductor material holds promise for ‘spintronics’ data-storage devices. KurzweilAI. Архів оригіналу за 17 травня 2017. Процитовано 17 вересня 2013.
- Lee, Y. F.; Wu, F.; Kumar, R.; Hunte, F.; Schwartz, J.; Narayan, J. (2013). Epitaxial integration of dilute magnetic semiconductor Sr3SnO with Si (001). Applied Physics Letters. 103 (11): 112101. Bibcode:2013ApPhL.103k2101L. doi:10.1063/1.4820770.
- Chambers, Scott A. (2010). Epitaxial Growth and Properties of Doped Transition Metal and Complex Oxide Films. Advanced Materials. 22 (2): 219—248. doi:10.1002/adma.200901867. PMID 20217685.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Magnitnij napivprovidnik napivprovidnikovij material sho maye vlastivosti feromagnetika abo shozhogo na feromagnetizm vidguku U priladah ci materiali mozhut zabezpechiti novij tip kontrolyu providnosti Todi yak tradicijna elektronika vikoristovuye dlya kontrolyu nosiyiv zaryadu napivprovidniki n chi p tipu praktichne zastosuvannya magnitnih napivprovidnikiv dozvolilo b takozh kontrol spinovogo stanu Ce moglo b v principi zabezpechiti majzhe povnu spinovu polyarizaciyu na vidminu vid zaliza ta inshih metaliv sho zabezpechuyut spinovu polyarizaciyu tilki na 50 sho bulo b vazhlivim dlya spintroniki napriklad u spinovih tranzistorah Popri te sho tradicijni magnitni materiali taki yak magnetit ye chasto napivrovidnikami magnetit napivmetal iz zaboronenoyu zonoyu 0 14 eV zavshirshki materiali sho mogli b naspravdi nazivatisya magnitnimi napivrovidnikami i znajti shiroke zastosuvannya povinni buti shozhimi na dobre vidomi napivprovidniki Z oglyadu na ce nabuli populyarnosti doslidzhennya rozbavlenih magnitnih napivrovidnikiv abo yak yih she nazivayut napivmagnitnih napivprovidnikiv U svoyij osnovi ce tradicijni napivprovidniki legovani atomami perehidnih metaliv zamist abo dodatkovo do zvichnih elektronno aktivnih domishok Interes do nih zumovlenij tim sho voni mayut unikalni vlastivosti dlya spintroniki j mozhut znajti tehnologichne zastosuvannya 1 2 Legovani shirokozonni napivprovidniki na zrazom oksidiv metaliv takih yak oksid cinku ZnO ta oksid titanu TiO2 vvazhayutsya najkrashimi kandidatami dlya promislovogo zastosuvannya napivmagnitnih napivprovidnikiv zavdyaki svoyij bagatofunkcionalnosti v magnitooptichnih rozrobkah Zokrema napivmagnitnij napivprovidnik na osnovi ZnO prozorij v optichnomu diapazoni ta proyavlyaye p yezoelektrichni vlastivosti zavdyaki chomu zbudiv znachnij interes yak silnij kandidat materialu dya spinovih tranzistoriv ta spin polyarizovanih svitlodiodiv 3 todi yak legovanij middyu TiO2 v anataznij fazi takozh yak peredbachayut ye perspektivnim napivmagnitnim napivprovidnikom 4 Hideo Ono z kolegami z Universitetu Tohoku pershimi vimiryali feromagnetizm u legovanih perehidnimi metalami tradicijnih napivprovidnikah na zrazok arsenidu indiyu ta arsenidu galiyu z domishkoyu Manganu GaMnAs en Ci materiali mali dovoli visoku temperaturu Kyuri hocha vse she nizhche kimnatnoyi sho rosla z koncentaciyeyu dirok Vidtodi feromagnitnij vidguk znajshli v riznih inshih napivprovidnikah legovanih riznimi inshimi perehidnimi metalami Teoriyared Ditl z kolegami peredbachili vpershe teoretichno v modifikovanij modeli Zenera sho feromagnetizm pri kimnatnij temperaturi povinen isnuvati v silno legovanomu ZnO p tipu 5 Oskilki magnitnij Co dobre rozchinyayetsya v ZnO sistema ZnO Co najbilshe vivchalasya v zastosuvannyah sho vimagali feromagnetizm pri kimnatnij temperaturi 6 Novishi rozrahunki z vikoristannyam teoriyi funkcionalu gustini 7 8 and experimental 9 10 pokazali sho v ZnO n tipu legovanomu kobaltom tezh povinen sposterigatisya feromagnetizm pri kimnatnij temperaturi Takozh vivchavsya ZnO legovanij inshimi perehidnimi metalami Vanadiyem Manganom ta middyu Materialired Tehnologiya vigotovlennya napivmagnitnih napivprovidnikiv zalezhit vid rozchinnosti domishok v osnovnomu materiali v umovah termichnoyi rivnovagi Napriklad rozchinnist bagatoh domishok v oksidi cinku dostatnya dlya vigotovlennya materialu v ob yemi todi yak inshi materiali mayut nastilki malu rozchinnist domishok sho prigotuvannya zrazkiv iz dostatnoyu koncentraciyeyu domishok vimagaye nerivnovazhnih umov napriklad viroshuvannya tonkih plivok Lavina doslidzhen v ostanni roki prolila svitlo na vazhlivi faktori neobhidni dlya otrimannya napivmagnitnih napivprovidnikiv iz visokoyu temperaturoyu Kyuri kimnatni temperaturi j vishe j zmogla proyasniti neodnoznachnist rezultativ ta poganu vidtvoryuvanist magnitnih vlaslivostej odnogo j togo zh materialu Spravdi pershe znachne vidkrittya v cij oblasti nalezhalo T Stori zi spivrobitnikami yaki pokazali sho temperaturu Kyuri legovanogo manganom Pb1 xSnxTe mozhna kontrolyuvati gustinoyu nosiyiv zaryadu 11 Teoriya Ditlya vimagala vid nosiyiv zaryadu v konkretnomu vipadku dirok vidigravati rol poserednika v utvorenni magnitnogo zv yazku mizh domishkami manganu v prototipnomu napivmagnitnomu napivprovidniku legovanomu mangarom arsenidi galiyu Yaksho koncentraciya dirok v magnitnomu napivprovidniku nedostatnya temperatura Kyuri bude duzhe nizkoyu abo material bude paramagnitnim Odnak koli koncentraciya dirok visoka 1020 cm 3 temperatura Kyuri zroste do 100 200 K 12 Novitni doslidzhennya grupi Deniela Gejmlina z Vashingtonskogo universitetu prolili svitlo na vazhlivist napriklad mizhvuzlovih atomiv cinku milkogo donora dlya dosyagnennya feromagnetizmu u legovanomu kobaltom ZnO z visokim znachennyam temperaturi Kyuri 13 14 Prikladi napivmagnitnih napivprovidnikovih materialiv vklyuchayut Legovani manganom arsenid indiyu ta arsenid galiyu GaMnAs z temperaturami Kyuri v diapazonah 50 100 K ta 100 200 K vidpovidno Legovanij manganom antimonid indiyu sho staye feromagnitnim navit pri kimnatnij temperaturi i navit pri koncentraciyi manganu menshij vid 1 15 Oksidi 16 Legovanij manganom ta zalizom oksid indiyu feromagnitnij pri kimnatnij temperaturi Oksid cinku Legovanij manganom oksid cinku Legovanij kobaltom oksid cinku n tipu 13 Oksid magniyu Prozori plivki MgO p type z oksigennimi vakansiyami 17 18 vodnochas feromagnetiki ta memristori z kilkoma rivnyami peremikan Dioksid titanu Legovanij kobaltom dioksid titanu yak rutil tak i anataz feromagnetik pri temperaturah ponad 400 K Legovanij hromom rutil feromagnetik pri temperaturah ponad 400 K Legovanij zalizom rutil ta legovanij zalizom anataz feromagnetiki pri kimnatnij temperaturi Legovanij middyu anataz 4 Legovanij nikelem anataz Dioksid olova Legovanij manganom dioksid olova temperatura Kyuri 340 K Legovanij zalizom temperatura Kyuri 340 K Legovanij stronciyem dioksid olova SrSnO2 napivmagnitnij napivprovidnik Sintezuyetsya u viglyadi epitaksialnoyi tonkoyi plivki na kremniyevij pidkladci 19 20 Oksid yevropiyu II temperatura Kyuri 69 K Yiyi mozhna zbilshiti vdvichi leguvannyam napriklad kisnevimi vakansiyami gadoliniyem Nitridi Legovanij hromom nitrid alyuminiyu 21 Vinoskired Furdyna J K 1988 Diluted magnetic semiconductors J Appl Phys 64 R29 doi 10 1063 1 341700 Ohno H 1998 Making Nonmagnetic Semiconductors Ferromagnetic Science 281 951 doi 10 1126 science 281 5379 951 Ogale S B 2010 Dilute doping defects and ferromagnetism in metal oxide systems Advanced Materials 22 29 3125 3155 doi 10 1002 adma 200903891 a b Assadi M H N Hanaor D A H 2013 Theoretical study on copper s energetics and magnetism in TiO2 polymorphs PDF Journal of Applied Physics 113 23 233913 doi 10 1063 1 4811539 Arhiv originalu PDF za 4 chervnya 2019 Procitovano 18 kvitnya 2017 Dietl T Ohno H Matsukura F Cibert J Ferrand D February 2000 Zener model description of ferromagnetism in zinc blende magnetic semiconductors Science 287 1019 doi 10 1126 science 287 5455 1019 PMID 10669409 Pearton S J Abernathy C R Overberg M E Thaler G T Norton D P Theodoropoulou N Hebard A F Park Y D Ren F Kim J Boatner L A 2003 Wide band gap ferromagnetic semiconductors and oxides J Appl Phys 93 1 1 13 doi 10 1063 1 1517164 Sato K Katayama Yoshida H 2000 Material Design for Transparent Ferromagnets with ZnO Based Magnetic Semiconductors Jap J Appl Phys 39 L555 doi 10 1143 jjap 39 l555 Sato K Katayama Yoshida H 2001 Stabilization of Ferromagnetic States by Electron Doping in Fe Co or Ni Doped ZnO Jap J Appl Phys 40 L334 doi 10 1143 jjap 40 l334 Ueda K Tabata H Kawai T 2001 Magnetic and electric properties of transition metal doped ZnO films Appl Phys Lett 79 988 doi 10 1063 1 1384478 Prellier W Fouchet A Mercey B Ch Raveau B 2003 Laser ablation of Co ZnO films deposited from Zn and Co metal targets on 0001 Al2O3 substrates Appl Phys Lett 82 3490 doi 10 1063 1 1578183 Story T Gala zka R Frankel R Wolff P 1986 Carrier concentration induced ferromagnetism in PbSnMnTe Physical Review Letters 56 7 777 Bibcode 1986PhRvL 56 777S doi 10 1103 PhysRevLett 56 777 PMID 10033282 Dietl T Ohno H Matsukura F Cibert J Ferrand D 2000 Zener Model Description of Ferromagnetism in Zinc Blende Magnetic Semiconductors Science 287 5455 1019 1022 Bibcode 2000Sci 287 1019D doi 10 1126 science 287 5455 1019 PMID 10669409 a b Kittilstved Kevin Schwartz Dana Tuan Allan Heald Steve Chambers Scott Gamelin Daniel 2006 Direct Kinetic Correlation of Carriers and Ferromagnetism in Co2 ZnO Physical Review Letters 97 3 Bibcode 2006PhRvL 97c7203K doi 10 1103 PhysRevLett 97 037203 Green pigment spins chip promise BBC News 9 serpnya 2006 Arhiv originalu za 6 serpnya 2017 Procitovano 19 veresnya 2010 Muons in Magnetic Semiconductors Triumf info Arhiv originalu za 21 listopada 2008 Procitovano 19 veresnya 2010 Fukumura T Toyosaki H Yamada Y 2005 Magnetic oxide semiconductors Semiconductor Science and Technology 20 4 S103 S111 arXiv cond mat 0504168 Bibcode 2005SeScT 20S 103F doi 10 1088 0268 1242 20 4 012 Martinez Boubeta C Beltran J I Balcells Ll Konstantinovic Z Valencia S Schmitz D Arbiol J Estrade S Cornil J 8 lipnya 2010 Ferromagnetism in transparent thin films of MgO Physical Review B 82 2 024405 Bibcode 2010PhRvB 82b4405M doi 10 1103 PhysRevB 82 024405 Jambois O Carreras P Antony A Bertomeu J Martinez Boubeta C 1 grudnya 2011 Resistance switching in transparent magnetic MgO films Solid State Communications 151 24 1856 1859 Bibcode 2011SSCom 151 1856J doi 10 1016 j ssc 2011 10 009 New room temperature magnetic semiconductor material holds promise for spintronics data storage devices KurzweilAI Arhiv originalu za 17 travnya 2017 Procitovano 17 veresnya 2013 Lee Y F Wu F Kumar R Hunte F Schwartz J Narayan J 2013 Epitaxial integration of dilute magnetic semiconductor Sr3SnO with Si 001 Applied Physics Letters 103 11 112101 Bibcode 2013ApPhL 103k2101L doi 10 1063 1 4820770 Chambers Scott A 2010 Epitaxial Growth and Properties of Doped Transition Metal and Complex Oxide Films Advanced Materials 22 2 219 248 doi 10 1002 adma 200901867 PMID 20217685 Otrimano z https uk wikipedia org w index php title Magnitnij napivprovidnik amp oldid 41242553