В алгебрі ділення многочленів стовпчиком — алгоритм ділення многочлена на многочлен , степінь якого менше або дорівнює степеню многочлена . Алгоритм являє собою узагальнену форму ділення чисел стовпчиком, легко реалізується вручну. Для будь-яких многочленів та , , існують єдині поліноми та , такі що
- ,
причому має нижчу ступінь, ніж .
Метою алгоритму ділення многочленів в стовпчик є знаходження частки і остачі для заданих діленого та ненульового дільника .
Ділення многочленів у стовпчик
Ділити многочлени в стовпчик можна алгоритмом, аналогічним до того, як діляться натуральні числа.
- Спочатку треба перевірити, чи обидва многочлени впорядковані за спадними степенями тієї самої змінної; якщо ні, то впорядкувати їх, дописуючи також ті члени, яких немає (наприклад, замість писатиметься ).
- «Підготувати» многочлени до ділення.
- Поділити найстарший член діленого на найстарший член дільника.
- Помножити отриманий одночлен на дільник.
- Відняти отриманий многочлен від діленого.
- Продовжувати так само, поки не отримаємо нуль або многочлен зі степенем меншим за степінь дільника. Це і є остача даного ділення.
Приклад
Покажемо, що
Частка і остача від ділення можуть бути знайдені при виконанні наступних кроків:
1. Ділимо перший елемент діленого на старший елемент дільника, розташовуємо результат під рисою .
2. Множимо дільник на отриманий вище результат ділення (на перший елемент частки). Записуємо результат під першими двома елементами діленого .
3. Віднімаємо, отриманий після множення, многочлен від діленого, записуємо результат під рискою .
4. Повторюємо попередні 3 кроки, використовуючи як ділене многочлен, записаний під рискою.
5. Повторюємо крок 4.
6. Кінець алгоритму.
Таким чином, многочлен — частка від ділення, а — остача.
Див. також
Джерела
- Многочлены. — 2-е. — Москва : МЦНМО, 2001. — 336 с. — .(рос.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
V algebri dilennya mnogochleniv stovpchikom algoritm dilennya mnogochlena f x displaystyle f x na mnogochlen g x displaystyle g x stepin yakogo menshe abo dorivnyuye stepenyu mnogochlena f x displaystyle f x Algoritm yavlyaye soboyu uzagalnenu formu dilennya chisel stovpchikom legko realizuyetsya vruchnu Dlya bud yakih mnogochleniv f x displaystyle f x ta g x displaystyle g x g x 0 displaystyle g x neq 0 isnuyut yedini polinomi q x displaystyle q x ta r x displaystyle r x taki sho f x g x q x r x g x displaystyle frac f x g x q x frac r x g x prichomu r x displaystyle r x maye nizhchu stupin nizh g x displaystyle g x Metoyu algoritmu dilennya mnogochleniv v stovpchik ye znahodzhennya chastki q x displaystyle q x i ostachi r x displaystyle r x dlya zadanih dilenogo f x displaystyle f x ta nenulovogo dilnika g x displaystyle g x Dilennya mnogochleniv u stovpchikDiliti mnogochleni v stovpchik mozhna algoritmom analogichnim do togo yak dilyatsya naturalni chisla Spochatku treba pereviriti chi obidva mnogochleni vporyadkovani za spadnimi stepenyami tiyeyi samoyi zminnoyi yaksho ni to vporyadkuvati yih dopisuyuchi takozh ti chleni yakih nemaye napriklad zamist 1 x 3 displaystyle 1 x 3 pisatimetsya x 3 0 x 2 1 displaystyle x 3 0x 2 1 Pidgotuvati mnogochleni do dilennya Podiliti najstarshij chlen dilenogo na najstarshij chlen dilnika Pomnozhiti otrimanij odnochlen na dilnik Vidnyati otrimanij mnogochlen vid dilenogo Prodovzhuvati tak samo poki ne otrimayemo nul abo mnogochlen zi stepenem menshim za stepin dilnika Ce i ye ostacha danogo dilennya PrikladPokazhemo sho x 3 12 x 2 42 x 3 x 2 9 x 27 123 x 3 displaystyle frac x 3 12x 2 42 x 3 x 2 9x 27 frac 123 x 3 Chastka i ostacha vid dilennya mozhut buti znajdeni pri vikonanni nastupnih krokiv 1 Dilimo pershij element dilenogo na starshij element dilnika roztashovuyemo rezultat pid risoyu x 3 x x 2 displaystyle left x 3 x x 2 right x 3 12 x 2 0 x 42 x 3 x 2 displaystyle begin matrix x 3 12x 2 0x 42 underline vert x 3 qquad qquad qquad quad vert x 2 end matrix 2 Mnozhimo dilnik na otrimanij vishe rezultat dilennya na pershij element chastki Zapisuyemo rezultat pid pershimi dvoma elementami dilenogo x 2 x 3 x 3 3 x 2 displaystyle left x 2 cdot left x 3 right x 3 3x 2 right x 3 12 x 2 0 x 42 x 3 x 3 3 x 2 x 2 displaystyle begin matrix x 3 12x 2 0x 42 underline vert x 3 x 3 3x 2 qquad qquad vert x 2 quad end matrix 3 Vidnimayemo otrimanij pislya mnozhennya mnogochlen vid dilenogo zapisuyemo rezultat pid riskoyu x 3 12 x 2 0 x 42 x 3 3 x 2 9 x 2 0 x 42 displaystyle left x 3 12x 2 0x 42 left x 3 3x 2 right 9x 2 0x 42 right x 3 12 x 2 0 x 42 x 3 x 3 3 x 2 x 2 9 x 2 0 x 42 displaystyle begin matrix x 3 12x 2 0x 42 underline vert x 3 underline x 3 3x 2 qquad qquad vert x 2 quad 9x 2 0x 42 end matrix 4 Povtoryuyemo poperedni 3 kroki vikoristovuyuchi yak dilene mnogochlen zapisanij pid riskoyu x 3 12 x 2 0 x 42 x 3 x 3 3 x 2 x 2 9 x 9 x 2 0 x 42 9 x 2 27 x 27 x 42 displaystyle begin matrix x 3 12x 2 0x 42 vert x 3 quad underline x 3 3x 2 qquad qquad overline vert x 2 9x 9x 2 0x 42 quad underline 9x 2 27x qquad quad quad 27x 42 end matrix 5 Povtoryuyemo krok 4 x 3 12 x 2 0 x 42 x 3 x 3 3 x 2 x 2 9 x 27 9 x 2 0 x 42 9 x 2 27 x 27 x 42 27 x 81 123 displaystyle begin matrix x 3 12x 2 0x 42 vert x 3 qquad quad underline x 3 3x 2 qquad qquad overline vert x 2 9x 27 9x 2 0x 42 qquad quad underline 9x 2 27x qquad qquad quad 27x 42 quad underline 27x 81 quad quad 123 end matrix 6 Kinec algoritmu Takim chinom mnogochlen q x x 2 9 x 27 displaystyle q x x 2 9x 27 chastka vid dilennya a r x 123 displaystyle r x 123 ostacha Div takozhTeorema Bezu Pravilo Ruffini Evklidove kilceDzherelaMnogochleny 2 e Moskva MCNMO 2001 336 s ISBN 5 94057 077 1 ros