У теорії графів і комбінаторній оптимізації двочасткова розмірність або число біклікового покриття графа G = (V, E) — це найменше число біклік (тобто повних двочасткових підграфів), необхідних, щоб покрити всі ребра E. Набір біклік, що покривають усі ребра в G, називається бікліковим покриттям ребер, або просто бікліковим покриттям. Двочасткова розмірність графа G часто позначається символом d(G).
Приклад
Приклад покриття ребер бікліками розібрано в таких діаграмах:
- Двочастковий граф...
- ... і покриття графа чотирма бікліками:
- червона бікліка покриття,
- синя бікліка покриття,
- зелена бікліка покриття,
- чорна бікліка покриття.
Формули двочасткових розмірностей для деяких графів
Двочасткова розмірність повного графа з n вершинами дорівнює .
Двочасткова розмірність корони з 2n вершинами дорівнює , де
є оберненою функцією центрального біноміального коефіцієнта.
Фішбурн і Гаммер визначили двочасткові розмірності для деяких графів. Наприклад, шлях має розмірність , а цикл має розмірність .
Обчислення двочасткових розмірностей
Задача визначення двочасткової розмірності для заданого графа G є задачею оптимізації. Задача розв'язності для двочасткової розмірності можна перефразувати так:
- ДАНО: Граф і додатне ціле число .
- ПИТАННЯ: Чи містить G біклікове покриття ребер, у якому максимум біклік?
Ця задача міститься під номером GT18 у класичній книзі Гарея і Джонсона про NP-повноту і є прямим переформулюванням іншої задачі розв'язності на сімействах скінченних множин.
Задача про базисну множину міститься під номером SP7 в тій самій книзі. Тут дано сімейство підмножин скінченної множини , базисна множина для — це інше сімейство підмножин множини , така, що будь-яку множину з можна уявити як об'єднання деяких базисних елементів з . Задача про базисну множину тепер формулюється так:
- ДАНО: Скінченну множину , сімейство підмножин множини і додатне ціле число k.
- ПИТАННЯ: Чи існує для базисна множина, розмір якої не більший від ?
У першому формулюванні NP-повноту довів Орлін навіть для двочасткових графів. NP-повноту задачі про базисну множину довів раніше Стокмеєр. Задача залишається NP-складною, навіть якщо ми обмежимося двочастковими графами, двочасткова розмірність яких становить менше , де n позначає розмір конкретної задачі. Добре, однак, що задача розв'язна за поліноміальний час на двочасткових вільних від доміно графів (доміно — це драбина висоти 3).
Щодо існування апроксимаційних алгоритмів Сімон довів, що задачу не можна добре апроксимувати (в припущенні P ≠ NP). Більш того, двочасткову розмірність NP-складно апроксимувати для для будь-якого фіксованого навіть для двочасткових графів.
Для порівняння, доведення, що задача є [en], є вправою під час побудови алгоритмів (як у книзі Донвея і Феллоуса). Фляйшнер, Міджуні, Паулусма і Зайдер навели також конкретні межі результуючого ядра, які потім поліпшили Нор, Хермелін, Чарлат і ін.
Фактично, для заданого двочасткового графа з n вершинами можна визначити за час , де , чи перевищує двочасткова розмірність графа число k.
Застосування
Завдання визначення двочасткової розмірності графа виникає в різних контекстах обчислень. Наприклад, у комп'ютерних системах різним користувачам системи може бути дозволено або заборонено доступ до різних ресурсів. При керуванні доступом на основі ролей, роль користувача визначає права доступу до набору ресурсів. Користувач може мати кілька ролей і він може отримати доступ до ресурсів, доступних для однієї з ролей. Роль, у свою чергу, можна призначити декільком користувачам. Задача пошуку ролей полягає у виділенні такого мінімального набору ролей, що для кожного користувача виділені йому ролі гарантують доступ до всіх ресурсів, необхідних користувачеві. Мнгожину користувачів разом зі множиною ресурсів природним чином задає двочастковий граф, ребра якого задають доступ користувачів до ресурсів. Кожна бікліка в такому графі є потенційною роллю, а оптимальним розв'язком задачі пошуку ролей буде саме мінімальне покриття ребер бікліками.
Аналогічний сценарій виникає в комп'ютерній безпеці, а саме, в безпечному масовому розсиланні. У цій ситуації потрібно розіслати деякі повідомлення низці приймачів через небезпечний канал. Кожне повідомлення слід зашифрувати деяким ключем шифрування, який відомий тільки приймачу, якому передається повідомлення. Кожен приймач може мати багато ключів шифрування і кожен ключ розсилається на кілька приймачів. Задача оптимального вибору ключів шифрування полягає в знаходженні мінімального набору ключів шифрування, за якого безпечне розсилання буде забезпечено. Як і вище, задачу можна змоделювати з використанням двочасткового графа, в якому мінімальне біклікове покриття ребер збігається з розв'язком задачі оптимального вибору ключів шифрування.
Інше застосування стосується біології, де в серології мінімальне покриття ребер бікліками використовується в математичному моделюванні людського лейкоцитарного антигену (HLA).
Див. також
- [en]
- Число перетинів графа — найменше число клік, необхідних для покриття ребер графів
- Покриття ребер циклами
Примітки
- de Caen, Gregory, Pullman, 1981.
- Fishburn, Hammer, 1996.
- Garey, Johnson, 1979.
- Orlin, 1977.
- Stockmeyer, 1975.
- Gottlieb, Savage, Yerukhimovich, 2005.
- Amilhastre, Janssen, Vilarem, 1997.
- Simon, 1990.
- Gruber, Holzer, 2007.
- Downey, Fellows, 1999.
- Fleischner, Mujuni, Paulusma, Szeider, 2009.
- Nor, Hermelin, Charlat, Engelstadter, 2010.
- Ene, Horne, Milosavljevic, Rao, 2008.
- Shu, Lee, Yannakakis, 2006.
- Nau, Markowsky, Woodbury, Amos, 1978.
Література
- Jérôme Amilhastre, Philippe Janssen, Marie-Catherine Vilarem. Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 5–7 January 1997, New Orleans, Louisiana. — ACM/SIAM, 1997. — С. 36–42.
- Dominique de Caen, David A. Gregory, Norman J. Pullman. 3rd Caribbean Conference on Combinatorics and Computing / Charles C. Cadogan. — Department of Mathematics, University of the West Indies, 1981. — С. 169–173.
- Rod Downey, Michael R. Fellows. Parameterized complexity. — Springer, 1999. — .
- Alina Ene, William G. Horne, Nikola Milosavljevic, Prasad Rao, Robert Schreiber, Robert Endre Tarjan. 13th ACM Symposium on Access Control Models and Technologies (SACMAT 2008) / Indrakshi Ray, Ninghui Li. — ACM, 2008. — С. 1–10.
- Peter C. Fishburn, Peter Ladislaw Hammer. Bipartite dimensions and bipartite degrees of graphs // . — 1996. — Т. 160, вип. 1–3 (17 червня). — С. 127–148. — DOI: .
- Herbert Fleischner, Egbert Mujuni, Daniël Paulusma, Stefan Szeider. Covering graphs with few complete bipartite subgraphs // . — 2009. — Т. 410, вип. 21—23 (17 червня). — С. 2045–2053. — DOI: .
- Michael R. Garey, David S. Johnson. . — W.H. Freeman, 1979. — .
- Lee-Ad J. Gottlieb, John E. Savage, Arkady Yerukhimovich. Efficient data storage in large nanoarrays // Theory of Computing Systems. — 2005. — Т. 38, вип. 4 (17 червня). — С. 503–536. — DOI: .
- Hermann Gruber, Markus Holzer. 11th (DLT 2007) / Terjo Harju, Juhani Karhumäki, Arto Lepistö. — Turku, Finland : Springer, 2007. — Т. 4588. — С. 205–216. — (LNCS) — DOI:
- Sylvia D. Monson, Norman J. Pullman, Rolf Rees. A survey of clique and biclique coverings and factorizations of (0,1)-matrices // Bulletin of the ICA. — 1995. — Т. 14 (17 червня). — С. 17–86.
- D. S. Nau, G. Markowsky, M. A. Woodbury, D. B. Amos. A mathematical analysis of human leukocyte antigen serology // Mathematical Biosciences. — 1978. — Т. 40 (17 червня). — С. 243–270. — DOI: . з джерела 18 березня 2022. Процитовано 10 липня 2021.
- Igor Nor, Danny Hermelin, Sylvain Charlat, Jan Engelstadter, Max Reuter, Olivier Duron, Marie-France Sagot. Mod/Resc Parsimony Inference. — 2010. — 17 червня.
- James Orlin. Contentment in graph theory: covering graphs with cliques // . — 1977. — Т. 80, вип. 5 (17 червня). — С. 406–424. — DOI: .
- Guoqiang Shu, David Lee, Mihalis Yannakakis. 20th International Parallel and Distributed Processing Symposium (IPDPS 2006). — IEEE, 2006.
- Hans-Ulrich Simon. On Approximate Solutions for Combinatorial Optimization Problems // SIAM Journal on Discrete Mathematics. — 1990. — Т. 3, вип. 2 (17 червня). — С. 294–310. — DOI: .
- Larry J. Stockmeyer. The set basis problem is NP-complete. — IBM, 1975. — (Technical Report RC-5431)
Посилання
- (англ.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
U teoriyi grafiv i kombinatornij optimizaciyi dvochastkova rozmirnist abo chislo biklikovogo pokrittya grafa G V E ce najmenshe chislo biklik tobto povnih dvochastkovih pidgrafiv neobhidnih shob pokriti vsi rebra E Nabir biklik sho pokrivayut usi rebra v G nazivayetsya biklikovim pokrittyam reber abo prosto biklikovim pokrittyam Dvochastkova rozmirnist grafa G chasto poznachayetsya simvolom d G PrikladPriklad pokrittya reber biklikami rozibrano v takih diagramah Dvochastkovij graf i pokrittya grafa chotirma biklikami chervona biklika pokrittya sinya biklika pokrittya zelena biklika pokrittya chorna biklika pokrittya Formuli dvochastkovih rozmirnostej dlya deyakih grafivDvochastkova rozmirnist povnogo grafa z n vershinami K n displaystyle K n dorivnyuye log 2 n displaystyle lceil log 2 n rceil Dvochastkova rozmirnist koroni z 2n vershinami dorivnyuye s n displaystyle sigma n de s n min k n k k 2 displaystyle sigma n min left k mid n leq binom k lfloor k 2 rfloor right ye obernenoyu funkciyeyu centralnogo binomialnogo koeficiyenta Fishburn i Gammer viznachili dvochastkovi rozmirnosti dlya deyakih grafiv Napriklad shlyah P n displaystyle P n maye rozmirnist d P n n 2 displaystyle d P n lfloor n 2 rfloor a cikl C n displaystyle C n maye rozmirnist d C n n 2 displaystyle d C n lceil n 2 rceil Obchislennya dvochastkovih rozmirnostejZadacha viznachennya dvochastkovoyi rozmirnosti dlya zadanogo grafa G ye zadacheyu optimizaciyi Zadacha rozv yaznosti dlya dvochastkovoyi rozmirnosti mozhna perefrazuvati tak DANO Graf G V E displaystyle G V E i dodatne cile chislo k displaystyle k PITANNYa Chi mistit G biklikove pokrittya reber u yakomu maksimum k displaystyle k biklik Cya zadacha mistitsya pid nomerom GT18 u klasichnij knizi Gareya i Dzhonsona pro NP povnotu i ye pryamim pereformulyuvannyam inshoyi zadachi rozv yaznosti na simejstvah skinchennih mnozhin Zadacha pro bazisnu mnozhinu mistitsya pid nomerom SP7 v tij samij knizi Tut dano simejstvo pidmnozhin S S 1 S n displaystyle mathcal S S 1 ldots S n skinchennoyi mnozhini U displaystyle mathcal U bazisna mnozhina dlya S displaystyle mathcal S ce inshe simejstvo pidmnozhin B B 1 B ℓ displaystyle mathcal B B 1 ldots B ell mnozhini U displaystyle mathcal U taka sho bud yaku mnozhinu z S i displaystyle S i mozhna uyaviti yak ob yednannya deyakih bazisnih elementiv z B displaystyle mathcal B Zadacha pro bazisnu mnozhinu teper formulyuyetsya tak DANO Skinchennu mnozhinu U displaystyle mathcal U simejstvo S S 1 S n displaystyle mathcal S S 1 ldots S n pidmnozhin mnozhini U displaystyle mathcal U i dodatne cile chislo k PITANNYa Chi isnuye dlya S displaystyle mathcal S bazisna mnozhina rozmir yakoyi ne bilshij vid k displaystyle k U pershomu formulyuvanni NP povnotu doviv Orlin navit dlya dvochastkovih grafiv NP povnotu zadachi pro bazisnu mnozhinu doviv ranishe Stokmeyer Zadacha zalishayetsya NP skladnoyu navit yaksho mi obmezhimosya dvochastkovimi grafami dvochastkova rozmirnist yakih stanovit menshe O log n displaystyle O log n de n poznachaye rozmir konkretnoyi zadachi Dobre odnak sho zadacha rozv yazna za polinomialnij chas na dvochastkovih vilnih vid domino grafiv domino ce drabina visoti 3 Shodo isnuvannya aproksimacijnih algoritmiv Simon doviv sho zadachu ne mozhna dobre aproksimuvati v pripushenni P NP Bilsh togo dvochastkovu rozmirnist NP skladno aproksimuvati dlya V 1 3 ϵ displaystyle V 1 3 epsilon dlya bud yakogo fiksovanogo ϵ gt 0 displaystyle epsilon gt 0 navit dlya dvochastkovih grafiv Dlya porivnyannya dovedennya sho zadacha ye en ye vpravoyu pid chas pobudovi algoritmiv yak u knizi Donveya i Fellousa Flyajshner Midzhuni Paulusma i Zajder naveli takozh konkretni mezhi rezultuyuchogo yadra yaki potim polipshili Nor Hermelin Charlat i in Faktichno dlya zadanogo dvochastkovogo grafa z n vershinami mozhna viznachiti za chas O f k n 3 displaystyle O f k n 3 de f k 2 k 2 k 1 3 k displaystyle f k 2 k2 k 1 3k chi perevishuye dvochastkova rozmirnist grafa chislo k ZastosuvannyaZavdannya viznachennya dvochastkovoyi rozmirnosti grafa vinikaye v riznih kontekstah obchislen Napriklad u komp yuternih sistemah riznim koristuvacham sistemi mozhe buti dozvoleno abo zaboroneno dostup do riznih resursiv Pri keruvanni dostupom na osnovi rolej rol koristuvacha viznachaye prava dostupu do naboru resursiv Koristuvach mozhe mati kilka rolej i vin mozhe otrimati dostup do resursiv dostupnih dlya odniyeyi z rolej Rol u svoyu chergu mozhna priznachiti dekilkom koristuvacham Zadacha poshuku rolej polyagaye u vidilenni takogo minimalnogo naboru rolej sho dlya kozhnogo koristuvacha vidileni jomu roli garantuyut dostup do vsih resursiv neobhidnih koristuvachevi Mngozhinu koristuvachiv razom zi mnozhinoyu resursiv prirodnim chinom zadaye dvochastkovij graf rebra yakogo zadayut dostup koristuvachiv do resursiv Kozhna biklika v takomu grafi ye potencijnoyu rollyu a optimalnim rozv yazkom zadachi poshuku rolej bude same minimalne pokrittya reber biklikami Analogichnij scenarij vinikaye v komp yuternij bezpeci a same v bezpechnomu masovomu rozsilanni U cij situaciyi potribno rozislati deyaki povidomlennya nizci prijmachiv cherez nebezpechnij kanal Kozhne povidomlennya slid zashifruvati deyakim klyuchem shifruvannya yakij vidomij tilki prijmachu yakomu peredayetsya povidomlennya Kozhen prijmach mozhe mati bagato klyuchiv shifruvannya i kozhen klyuch rozsilayetsya na kilka prijmachiv Zadacha optimalnogo viboru klyuchiv shifruvannya polyagaye v znahodzhenni minimalnogo naboru klyuchiv shifruvannya za yakogo bezpechne rozsilannya bude zabezpecheno Yak i vishe zadachu mozhna zmodelyuvati z vikoristannyam dvochastkovogo grafa v yakomu minimalne biklikove pokrittya reber zbigayetsya z rozv yazkom zadachi optimalnogo viboru klyuchiv shifruvannya Inshe zastosuvannya stosuyetsya biologiyi de v serologiyi minimalne pokrittya reber biklikami vikoristovuyetsya v matematichnomu modelyuvanni lyudskogo lejkocitarnogo antigenu HLA Div takozh en Chislo peretiniv grafa najmenshe chislo klik neobhidnih dlya pokrittya reber grafiv Pokrittya reber ciklamiPrimitkide Caen Gregory Pullman 1981 Fishburn Hammer 1996 Garey Johnson 1979 Orlin 1977 Stockmeyer 1975 Gottlieb Savage Yerukhimovich 2005 Amilhastre Janssen Vilarem 1997 Simon 1990 Gruber Holzer 2007 Downey Fellows 1999 Fleischner Mujuni Paulusma Szeider 2009 Nor Hermelin Charlat Engelstadter 2010 Ene Horne Milosavljevic Rao 2008 Shu Lee Yannakakis 2006 Nau Markowsky Woodbury Amos 1978 LiteraturaJerome Amilhastre Philippe Janssen Marie Catherine Vilarem Proceedings of the Eighth Annual ACM SIAM Symposium on Discrete Algorithms 5 7 January 1997 New Orleans Louisiana ACM SIAM 1997 S 36 42 Dominique de Caen David A Gregory Norman J Pullman 3rd Caribbean Conference on Combinatorics and Computing Charles C Cadogan Department of Mathematics University of the West Indies 1981 S 169 173 Rod Downey Michael R Fellows Parameterized complexity Springer 1999 ISBN 0 387 94883 X Alina Ene William G Horne Nikola Milosavljevic Prasad Rao Robert Schreiber Robert Endre Tarjan 13th ACM Symposium on Access Control Models and Technologies SACMAT 2008 Indrakshi Ray Ninghui Li ACM 2008 S 1 10 Peter C Fishburn Peter Ladislaw Hammer Bipartite dimensions and bipartite degrees of graphs 1996 T 160 vip 1 3 17 chervnya S 127 148 DOI 10 1016 0012 365X 95 00154 O Herbert Fleischner Egbert Mujuni Daniel Paulusma Stefan Szeider Covering graphs with few complete bipartite subgraphs 2009 T 410 vip 21 23 17 chervnya S 2045 2053 DOI 10 1016 j tcs 2008 12 059 Michael R Garey David S Johnson W H Freeman 1979 ISBN 0 7167 1045 5 Lee Ad J Gottlieb John E Savage Arkady Yerukhimovich Efficient data storage in large nanoarrays Theory of Computing Systems 2005 T 38 vip 4 17 chervnya S 503 536 DOI 10 1007 s00224 004 1196 9 Hermann Gruber Markus Holzer 11th DLT 2007 Terjo Harju Juhani Karhumaki Arto Lepisto Turku Finland Springer 2007 T 4588 S 205 216 LNCS DOI 10 1007 978 3 540 73208 2 21 Sylvia D Monson Norman J Pullman Rolf Rees A survey of clique and biclique coverings and factorizations of 0 1 matrices Bulletin of the ICA 1995 T 14 17 chervnya S 17 86 D S Nau G Markowsky M A Woodbury D B Amos A mathematical analysis of human leukocyte antigen serology Mathematical Biosciences 1978 T 40 17 chervnya S 243 270 DOI 10 1016 0025 5564 78 90088 3 z dzherela 18 bereznya 2022 Procitovano 10 lipnya 2021 Igor Nor Danny Hermelin Sylvain Charlat Jan Engelstadter Max Reuter Olivier Duron Marie France Sagot Mod Resc Parsimony Inference 2010 17 chervnya James Orlin Contentment in graph theory covering graphs with cliques 1977 T 80 vip 5 17 chervnya S 406 424 DOI 10 1016 1385 7258 77 90055 5 Guoqiang Shu David Lee Mihalis Yannakakis 20th International Parallel and Distributed Processing Symposium IPDPS 2006 IEEE 2006 Hans Ulrich Simon On Approximate Solutions for Combinatorial Optimization Problems SIAM Journal on Discrete Mathematics 1990 T 3 vip 2 17 chervnya S 294 310 DOI 10 1137 0403025 Larry J Stockmeyer The set basis problem is NP complete IBM 1975 Technical Report RC 5431 Posilannya angl