Берилій-8 | |
---|---|
Загальні відомості | |
Назва, символ | Берилій-8,8Be |
Нейтронів | 4 |
Протонів | 4 |
Властивості ізотопу | |
Природна концентрація | 0 |
Період напіврозпаду | (8.19±0.37)×10−17 s |
Продукти розпаду | 4He |
Атомна маса | 8.00530510(4) а.о.м |
Спін | 0 |
Канал розпаду | Енергія розпаду |
α | (91.84±4)×10−3 МеВ |
Берилій-8 (8Be, Be-8) — дуже нестійкий радіонуклід із 4 нейтронами та 4 протонами. Він розпадається на дві альфа-частинки з періодом піврозпаду порядку 8,19 × 10−17 секунд. Його нестійкість має важливі наслідки для зоряного нуклеосинтезу, оскільки створює вузьке місце у синтезі важчих хімічних елементів. Протилежним фактором, який полегшує перебіг потрійного альфа-процесу, дещо компенсуючи нестійкість 8Be, є резонансний збуджений стан вуглецю-12, теоретично передбачений Фредом Гойлом на основі спостережуваного зоряного нуклеосинтезу. Властивості 8Be також призвели до гіпотез щодо тонкої настройки Всесвіту та теоретичних досліджень уявних світів зі стійким 8Be.
Відкриття
Відкриття берилію-8 відбулося незабаром після будівництва першого прискорювача елементарних частинок у 1932 році. Фізики Джон Дуглас Кокрофт і Ернест Волтон провели свій перший експеримент на своєму прискорювачі в Кавендіській лабораторії в Кембриджі, під час якого вони опромінили літій-7 протонами. Вони повідомили, що це створило ядро з масою A = 8, яке майже миттєво розпадається на дві альфа-частинки.
Властивості
Берилій-8 має надлищок енергії 92 кеВ у порівнянні з двома альфа-частинками (ядрами гелію-4), тому розпад берилію-8 на дві альфа-частинки є енергетично вигідним, а синтез 8Be з двох ядер 4He є ендотермічним. Розпаду 8Be сприяє структура ядра 8Be: воно сильно деформоване і вважається молекулоподібним скупченням двох альфа-частинок, які дуже легко розділити. Однак ця система з двох α-частинок, щоб розділитись, має подолати невисокий енергетичний бар'єру, що дозволяє їй існувати протягом нетривалого часу. А саме, 8Be розпадається з періодом піврозпаду 8,19 × 10−17секунд.
8Be має кілька збуджених станів. Це також короткоживучі резонанси, що мають ширину до кількох МеВ і різні ізоспіни, які швидко розпадаються до основного стану або на дві альфа-частинки.
Роль у зоряному нуклеосинтезі
У зоряному нуклеосинтезі два ядра гелію-4 можуть зіштовхнутися і злитися в одне ядро берилію-8. Берилій-8 має надзвичайно короткий період піврозпаду (8,19 × 10−17 секунд) і розпадається назад на два ядра гелію-4. Це створює вузьке місце в первинному нуклеосинтезі та зоряному нуклеосинтезі, перешкоджаючи утворенню важких елементів у першому та обмежуючи їх утворення у другому процесі. Якщо берилій-8 встигає зіштовхнутись з ядром гелію-4 до того, як розпадеться, то вони можуть злитися в ядро вуглецю-12. Цю реакцію вперше незалежно запропонували Епік і Солпітер на початку 1950-х років.
Через нестабільність 8Be потрійний альфа-процес є єдиною реакцією, в якій 12C і важчі елементи можуть утворюватися у спостережуваних кількостях. Однак, завдяки ненульовому часу життя 8Be, потрійний альфа-процес виявляється послідовністю двох двохчастинкових процесів, натомість як трьохчастинкова реакція була б зовсім неймовірною. Ще однією перешкодою на шляху до утворення 12C є те, що зіткнення між 8Be і 4He найчастіше розбеває систему на альфа-частинки, а не спричиняє синтез 12C.
Оскільки з розрахунків виходило, що швидкість потрійного альфа-процесу менша, ніж необхідна для пояснення зоряного нуклеосинтезу, Фред Гойл у 1954 році постулював існування резонансу вуглецю-12 в області енергій зоряного потрійного альфа-процесу, що мало підвищити швидкість утворення вуглецю-12, незважаючи на надзвичайно короткий період напіврозпаду берилію-8. Існування цього резонансу (так званий "стан Гойла") справді було підтверджено експериментально незабаром після цього теоретичного передбачення. Це передбачення Гойла тепер використовується як аргумент на користь антропного принципу та гіпотези точно вивіреного Всесвіту.
Гіпотетичні всесвіти зі стабільним 8Be
Оскільки берилій-8 не зв'язаний лише на 92 кеВ, існує теорія, що дуже невеликі зміни в ядерному потенціалі та точне налаштування певних констант (таких як α, константа тонкої структури) можуть достатньо збільшити енергію зв'язку 8Be, щоб запобігти його альфа-розпаду, і зробити його стабільним. Це призвело до дослідження гіпотетичних сценаріїв, у яких 8Be є стабільним, і припущень про інші всесвіти з іншими фундаментальними константами. Ці дослідження показують, що зникнення спричиненого 8Be вузького місця в нуклеосинтезі призведе до зовсім іншого сценарію потрійного альфа-процесу та змінить кількість важких елементів у Всесвіті. Оскільки первинний нуклеосинтез під час Великого вибуху відбувся лише протягом короткого періоду часу, вважається, що не було б істотної різниці у виробництві вуглецю, навіть якби 8Be був стабільним. Однак стабільний 8Be уможливить альтернативні шляхи реакції при горінні гелію (такі як 8Be + 4He і 8Be + 8Be, утворюючи фазу «горіння берилію») і, можливо, вплине на кількість результуючих 12C, 16O, і важчих ядер, хоча 1H і 4He залишаться найпоширенішими нуклідами. Це також вплине на еволюцію зір через більш ранній початок і вищу швидкість горіння гелію (і горіння берилію).
Примітки
- Thoennessen, M. (2016). The Discovery of Isotopes: A Complete Compilation. Springer. pp. 45–48. doi:10.1007/978-3-319-31763-2. . LCCN 2016935977.
- Coc, A.; Olive, K. A.; Uzan, J.-P.; Vangioni, E. (2012). Variation of fundamental constants and the role of A = 5 and A = 8 nuclei on primordial nucleosynthesis. Physical Review D. 86 (4): 043529. arXiv:1206.1139. Bibcode:2012PhRvD..86d3529C. doi:10.1103/PhysRevD.86.043529.
- Schatz, H.; Blaum, K. (2006). Nuclear masses and the origin of the elements (PDF). Europhysics News. 37 (5): 16—21. Bibcode:2006ENews..37e..16S. doi:10.1051/epn:2006502.
- Freer, M. (2014). Clustering in Light Nuclei; from the Stable to the Exotic. У Scheidenberger, C. (ред.). The Euroschool on Exotic Beams: Lecture Notes in Physics. Lecture Notes in Physics. Т. 4. Springer. с. 1—37. doi:10.1007/978-3-642-45141-6. ISBN . ISSN 0075-8450.
- Zhou, B.; Ren, Z. (2017). Nonlocalized clustering in nuclei. Advances in Physics. 2 (2): 359—372. Bibcode:2017AdPhX...2..359Z. doi:10.1080/23746149.2017.1294033.
- Coc, A.; Vangioni, E. (2014). The triple-alpha reaction and the A = 8 gap in BBN and Population III stars (PDF). Memorie della Società Astronomica Italiana. 85: 124—129. Bibcode:2014MmSAI..85..124C.
- Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties". Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
- Feng, J. L.; Fornal, B.; Galon, I. та ін. (2016). Evidence for a protophobic fifth force from 8Be nuclear transitions. Physical Review Letters. 117 (7): 071803. arXiv:1604.07411. doi:10.1103/PhysRevLett.117.071803. PMID 27563952.
- Öpik, E. J. (1951). Stellar Models with Variable Composition. II. Sequences of Models with Energy Generation Proportional to the Fifteenth Power of Temperature. Proceedings of the Royal Irish Academy, Section A. 54: 49—77. JSTOR 20488524.
- Salpeter, E. E. (1952). Nuclear Reactions in the Stars. I. Proton-Proton Chain". Physical Review. 88 (3): 547—553. Bibcode:1952PhRv...88..547S. doi:10.1103/PhysRev.88.547.
- Inglis-Arkell, E. This Unbelievable Coincidence Is Responsible For Life In The Universe. Gizmodo. Процитовано 14 July 2019.
- Hoyle, F. (1954). "On Nuclear Reactions Occurring in Very Hot STARS. I. the Synthesis of Elements from Carbon to Nickel". Astrophysical Journal Supplement. 1: 121–146, DOI:10.1086/190005
- Epelbaum, E.; Krebs, H.; Lee, D.; Meißner, Ulf-G. (2011). Ab initio calculation of the Hoyle state. Physical Review Letters. 106 (19): 192501–1–192501–4. arXiv:1101.2547. Bibcode:2011PhRvL.106s2501E. doi:10.1103/PhysRevLett.106.192501. PMID 21668146.
- Jenkins, David; Kirsebom, Oliver (7 лютого 2013). The secret of life. Physics World (брит.). оригіналу за 13 лютого 2021. Процитовано 21 серпня 2021.
- Adams, F. C.; Grohs, E. (2017). Stellar helium burning in other universes: A solution to the triple alpha fine-tuning problem. Astroparticle Physics. 7: 40—54. arXiv:1608.04690. Bibcode:2017APh....87...40A. doi:10.1016/j.astropartphys.2016.12.002.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Berilij 8 Tablicya izotopiv Zagalni vidomosti Nazva simvol Berilij 8 8Be Nejtroniv 4 Protoniv 4 Vlastivosti izotopu Prirodna koncentraciya 0 Period napivrozpadu 8 19 0 37 10 17 s Produkti rozpadu 4He Atomna masa 8 00530510 4 a o m Spin 0 Kanal rozpadu Energiya rozpadu a 91 84 4 10 3 MeV Berilij 8 8Be Be 8 duzhe nestijkij radionuklid iz 4 nejtronami ta 4 protonami Vin rozpadayetsya na dvi alfa chastinki z periodom pivrozpadu poryadku 8 19 10 17 sekund Jogo nestijkist maye vazhlivi naslidki dlya zoryanogo nukleosintezu oskilki stvoryuye vuzke misce u sintezi vazhchih himichnih elementiv Protilezhnim faktorom yakij polegshuye perebig potrijnogo alfa procesu desho kompensuyuchi nestijkist 8Be ye rezonansnij zbudzhenij stan vuglecyu 12 teoretichno peredbachenij Fredom Gojlom na osnovi sposterezhuvanogo zoryanogo nukleosintezu Vlastivosti 8Be takozh prizveli do gipotez shodo tonkoyi nastrojki Vsesvitu ta teoretichnih doslidzhen uyavnih svitiv zi stijkim 8Be VidkrittyaVidkrittya beriliyu 8 vidbulosya nezabarom pislya budivnictva pershogo priskoryuvacha elementarnih chastinok u 1932 roci Fiziki Dzhon Duglas Kokroft i Ernest Volton proveli svij pershij eksperiment na svoyemu priskoryuvachi v Kavendiskij laboratoriyi v Kembridzhi pid chas yakogo voni oprominili litij 7 protonami Voni povidomili sho ce stvorilo yadro z masoyu A 8 yake majzhe mittyevo rozpadayetsya na dvi alfa chastinki VlastivostiPotrijnij alfa proces Berilij 8 maye nadlishok energiyi 92 keV u porivnyanni z dvoma alfa chastinkami yadrami geliyu 4 tomu rozpad beriliyu 8 na dvi alfa chastinki ye energetichno vigidnim a sintez 8Be z dvoh yader 4He ye endotermichnim Rozpadu 8Be spriyaye struktura yadra 8Be vono silno deformovane i vvazhayetsya molekulopodibnim skupchennyam dvoh alfa chastinok yaki duzhe legko rozdiliti Odnak cya sistema z dvoh a chastinok shob rozdilitis maye podolati nevisokij energetichnij bar yeru sho dozvolyaye yij isnuvati protyagom netrivalogo chasu A same 8Be rozpadayetsya z periodom pivrozpadu 8 19 10 17sekund 8Be maye kilka zbudzhenih staniv Ce takozh korotkozhivuchi rezonansi sho mayut shirinu do kilkoh MeV i rizni izospini yaki shvidko rozpadayutsya do osnovnogo stanu abo na dvi alfa chastinki Rol u zoryanomu nukleosinteziU zoryanomu nukleosintezi dva yadra geliyu 4 mozhut zishtovhnutisya i zlitisya v odne yadro beriliyu 8 Berilij 8 maye nadzvichajno korotkij period pivrozpadu 8 19 10 17 sekund i rozpadayetsya nazad na dva yadra geliyu 4 Ce stvoryuye vuzke misce v pervinnomu nukleosintezi ta zoryanomu nukleosintezi pereshkodzhayuchi utvorennyu vazhkih elementiv u pershomu ta obmezhuyuchi yih utvorennya u drugomu procesi Yaksho berilij 8 vstigaye zishtovhnutis z yadrom geliyu 4 do togo yak rozpadetsya to voni mozhut zlitisya v yadro vuglecyu 12 Cyu reakciyu vpershe nezalezhno zaproponuvali Epik i Solpiter na pochatku 1950 h rokiv Cherez nestabilnist 8Be potrijnij alfa proces ye yedinoyu reakciyeyu v yakij 12C i vazhchi elementi mozhut utvoryuvatisya u sposterezhuvanih kilkostyah Odnak zavdyaki nenulovomu chasu zhittya 8Be potrijnij alfa proces viyavlyayetsya poslidovnistyu dvoh dvohchastinkovih procesiv natomist yak trohchastinkova reakciya bula b zovsim nejmovirnoyu She odniyeyu pereshkodoyu na shlyahu do utvorennya 12C ye te sho zitknennya mizh 8Be i 4He najchastishe rozbevaye sistemu na alfa chastinki a ne sprichinyaye sintez 12C Oskilki z rozrahunkiv vihodilo sho shvidkist potrijnogo alfa procesu mensha nizh neobhidna dlya poyasnennya zoryanogo nukleosintezu Fred Gojl u 1954 roci postulyuvav isnuvannya rezonansu vuglecyu 12 v oblasti energij zoryanogo potrijnogo alfa procesu sho malo pidvishiti shvidkist utvorennya vuglecyu 12 nezvazhayuchi na nadzvichajno korotkij period napivrozpadu beriliyu 8 Isnuvannya cogo rezonansu tak zvanij stan Gojla spravdi bulo pidtverdzheno eksperimentalno nezabarom pislya cogo teoretichnogo peredbachennya Ce peredbachennya Gojla teper vikoristovuyetsya yak argument na korist antropnogo principu ta gipotezi tochno vivirenogo Vsesvitu Gipotetichni vsesviti zi stabilnim 8BeOskilki berilij 8 ne zv yazanij lishe na 92 keV isnuye teoriya sho duzhe neveliki zmini v yadernomu potenciali ta tochne nalashtuvannya pevnih konstant takih yak a konstanta tonkoyi strukturi mozhut dostatno zbilshiti energiyu zv yazku 8Be shob zapobigti jogo alfa rozpadu i zrobiti jogo stabilnim Ce prizvelo do doslidzhennya gipotetichnih scenariyiv u yakih 8Be ye stabilnim i pripushen pro inshi vsesviti z inshimi fundamentalnimi konstantami Ci doslidzhennya pokazuyut sho zniknennya sprichinenogo 8Be vuzkogo miscya v nukleosintezi prizvede do zovsim inshogo scenariyu potrijnogo alfa procesu ta zminit kilkist vazhkih elementiv u Vsesviti Oskilki pervinnij nukleosintez pid chas Velikogo vibuhu vidbuvsya lishe protyagom korotkogo periodu chasu vvazhayetsya sho ne bulo b istotnoyi riznici u virobnictvi vuglecyu navit yakbi 8Be buv stabilnim Odnak stabilnij 8Be umozhlivit alternativni shlyahi reakciyi pri gorinni geliyu taki yak 8Be 4He i 8Be 8Be utvoryuyuchi fazu gorinnya beriliyu i mozhlivo vpline na kilkist rezultuyuchih 12C 16O i vazhchih yader hocha 1H i 4He zalishatsya najposhirenishimi nuklidami Ce takozh vpline na evolyuciyu zir cherez bilsh rannij pochatok i vishu shvidkist gorinnya geliyu i gorinnya beriliyu PrimitkiThoennessen M 2016 The Discovery of Isotopes A Complete Compilation Springer pp 45 48 doi 10 1007 978 3 319 31763 2 ISBN 978 3 319 31761 8 LCCN 2016935977 Coc A Olive K A Uzan J P Vangioni E 2012 Variation of fundamental constants and the role of A 5 and A 8 nuclei on primordial nucleosynthesis Physical Review D 86 4 043529 arXiv 1206 1139 Bibcode 2012PhRvD 86d3529C doi 10 1103 PhysRevD 86 043529 Schatz H Blaum K 2006 Nuclear masses and the origin of the elements PDF Europhysics News 37 5 16 21 Bibcode 2006ENews 37e 16S doi 10 1051 epn 2006502 Freer M 2014 Clustering in Light Nuclei from the Stable to the Exotic U Scheidenberger C red The Euroschool on Exotic Beams Lecture Notes in Physics Lecture Notes in Physics T 4 Springer s 1 37 doi 10 1007 978 3 642 45141 6 ISBN 978 3 642 45140 9 ISSN 0075 8450 Zhou B Ren Z 2017 Nonlocalized clustering in nuclei Advances in Physics 2 2 359 372 Bibcode 2017AdPhX 2 359Z doi 10 1080 23746149 2017 1294033 Coc A Vangioni E 2014 The triple alpha reaction and the A 8 gap in BBN and Population III stars PDF Memorie della Societa Astronomica Italiana 85 124 129 Bibcode 2014MmSAI 85 124C Audi G Kondev F G Wang M Huang W J Naimi S 2017 The NUBASE2016 evaluation of nuclear properties Chinese Physics C 41 3 030001 Bibcode 2017ChPhC 41c0001A doi 10 1088 1674 1137 41 3 030001 Feng J L Fornal B Galon I ta in 2016 Evidence for a protophobic fifth force from 8Be nuclear transitions Physical Review Letters 117 7 071803 arXiv 1604 07411 doi 10 1103 PhysRevLett 117 071803 PMID 27563952 Opik E J 1951 Stellar Models with Variable Composition II Sequences of Models with Energy Generation Proportional to the Fifteenth Power of Temperature Proceedings of the Royal Irish Academy Section A 54 49 77 JSTOR 20488524 Salpeter E E 1952 Nuclear Reactions in the Stars I Proton Proton Chain Physical Review 88 3 547 553 Bibcode 1952PhRv 88 547S doi 10 1103 PhysRev 88 547 Inglis Arkell E This Unbelievable Coincidence Is Responsible For Life In The Universe Gizmodo Procitovano 14 July 2019 Hoyle F 1954 On Nuclear Reactions Occurring in Very Hot STARS I the Synthesis of Elements from Carbon to Nickel Astrophysical Journal Supplement 1 121 146 DOI 10 1086 190005 Epelbaum E Krebs H Lee D Meissner Ulf G 2011 Ab initio calculation of the Hoyle state Physical Review Letters 106 19 192501 1 192501 4 arXiv 1101 2547 Bibcode 2011PhRvL 106s2501E doi 10 1103 PhysRevLett 106 192501 PMID 21668146 Jenkins David Kirsebom Oliver 7 lyutogo 2013 The secret of life Physics World brit originalu za 13 lyutogo 2021 Procitovano 21 serpnya 2021 Adams F C Grohs E 2017 Stellar helium burning in other universes A solution to the triple alpha fine tuning problem Astroparticle Physics 7 40 54 arXiv 1608 04690 Bibcode 2017APh 87 40A doi 10 1016 j astropartphys 2016 12 002