Куби Фібоначчі, або мережі Фібоначчі, — це сімейство неорієнтованих графів з багатими рекурсивними властивостями, що виникло в теорії чисел. Математично ці куби схожі на графи гіперкуба, але з числом вершин, рівним числу Фібоначчі. Куби Фібоначчі вперше явно визначив у своїй статті Сюй в контексті взаємозв'язків топологій для зв'язку систем паралельних обчислень або розподілених систем. Вони застосовуються також в хімічній теорії графів.
Куб Фібоначчі можна визначити в термінах кодів Фібоначчі та відстані Геммінга, незалежних множин вершин у шляхах, або через дистрибутивні ґратки.
Визначення
Подібно до графа гіперкуба, вершини куба Фібоначчі порядку n можна позначити бітовими рядками довжини n таким чином, що дві вершини суміжні, якщо їхні мітки відрізняються одним бітом. Однак в кубі Фібоначчі дозволені тільки мітки, які (як бітові рядки) не мають двох одиниць поспіль. Є можливих міток, де позначає -е число Фібоначчі, а тому є вершин в кубі Фібоначчі порядку n.
Вузлам таких мереж можуть бути призначені послідовні цілі числа від до . Бітові рядки, які відповідають цим числам, задаються їх поданнями Цекендорфа.
Алгебрична структура
Куб Фібоначчі порядку є [en] доповнення графа шляху з вершинами. Тобто, кожна вершина куба Фібоначчі представляє кліку в доповненні шляху або, що еквівалентно, в незалежній множині в самому шляху. Дві вершини куба Фібоначчі суміжні, якщо кліки або незалежні множини, які вони представляють, відрізняються видаленням або додаванням одного елемента. Тому, подібно до інших симплексних графів, куби Фібоначчі є [ru] і, більш загально, частковими кубами. Медіана будь-яких трьох вершин куба Фібоначчі може бути знайдена шляхом обчислення побітової мажоритарної функції трьох міток. Якщо кожна із трьох міток не має двох послідовних бітів 1, то це виконується і для їх мажоритарного значення.
Куб Фібоначчі є також графом дистрибутивної ґратки, яка може бути отримана через [en] з [en]», частково впорядкованої множини, визначеної почерговою послідовністю відношень . Є також альтернативний опис мовою теорії графів тієї ж ґратки: незалежні множини будь-якого двочасткового графа можуть бути дані в певному порядку, в якому одна незалежна множина менша від іншої, якщо вони отримані шляхом видалення елементів з однієї частини і додавання елементів в іншу частину. З цим порядком незалежні множини утворюють дистрибутивну ґратку, а застосування даної побудови до графа-шляху призводить до асоціації решітки з кубом Фібоначчі.
Властивості й алгоритми
Куб Фібоначчі порядку можна розбити на куб Фібоначчі порядку (розмітка вузлів починається з біта, що має значення 0) і куб Фібоначчі порядку (вузли починаються з біта значенням 1).
Будь-який куб Фібоначчі має гамільтонів шлях. Конкретніше, існує шлях, який обходить розбиття, описане вище — він відвідує вузли спочатку з 0, а потім з 1 у двох неперервних підпослідовностях. У цих двох підпослідовностях шлях може бути побудований рекурсивно за тим самим правилом, з'єднуючи дві підпослідовності кінцями, на яких другий біт має значення 0. Тоді, наприклад, у кубі Фібоначчі порядку 4 послідовністю, побудованою таким чином, буде (0100-0101-0001- 0000-0010) — (1010-1000-1001), де дужки показують підпослідовності двох підграфів. Куби Фібоначчі з парним числом вузлів, більшим від двох, мають гамільтонів цикл.
Мунаріні і Сальві вивчали радіус і число незалежності кубів Фібоначчі. Оскільки ці графи двочасткові і мають гамільтонів шлях, їхні максимальні незалежні множини мають число вершин, що дорівнює половині вершин усього графа, округлене до найближчого цілого. Діаметр куба Фібоначчі порядку n дорівнює n, а його радіус дорівнює n/2 (знову, округлений до найближчого цілого).
Тараненко і Весель показали, що можна перевірити, чи є граф кубом Фібоначчі за час, близький до його розміру.
Застосування
Сюй, а також Сюй, Пейдж і Лью запропонували використовувати куби Фібоначчі як мережеву топологію в системах паралельних обчислень. Як комунікаційна мережа куб Фібоначчі має корисні властивості, подібні до властивостей гіперкуба — число інцидентних ребер на одну вершину не більше ніж , і діаметр мережі не перевищує , обидва значення пропорційні логарифма числа вершин, а можливість розбити мережу на менші підмережі того ж типу дозволяє розщепити багато завдань паралельних обчислень. Куби Фібоначчі підтримують також ефективні протоколи для маршрутизації і широкомовлення в системах розподілених обчислень.
Клавжар і Жігерт застосували куби Фібоначчі в хімічній теорії графів як опис сімейства досконалих парувань деяких молекулярних графів. Для молекулярної структури, описуваної планарним графом , резонансним графом (або графом -перетворення) графа є граф, вершини якого описують досконалі парування графа , а ребра якого з'єднують пари досконалих парувань, симетрична різниця яких є внутрішньою гранню графа . Поліциклічні ароматичні вуглеводні можуть бути описані як підграфи шестикутної мозаїки площини, а резонансні графи описують можливі структури з подвійними зв'язками цих молекул. Як показали Клавжар і Жігерт, вуглеводні, утворені ланцюжками шестикутників, сполучених ребро до ребра без трьох суміжних шестикутників на прямій, мають резонансні графи, які точно є графами Фібоначчі. Більш загально, Чжан, Оу і Яо описали клас планарних двочасткових графів, які мають куби Фібоначчі як графи резонансу.
Пов'язані графи
Узагальнені куби Фібоначчі запропонували Сюй і Чжан, базуючись на числах Фібоначчі -го порядку, які пізніше Сюй, Чжан і Дас, ґрунтуючись на більш загальних видах лінійних рекурсій, розширили на клас мереж, названих лінійними рекурсивними мережами. Ву модифікував куби Фібоначчі другого порядку, ґрунтуючись на інших початкових умовах. Інший пов'язаний граф — куб Люка, з кількістю вершин, рівним числу Люка, визначений з куба Фібоначчі шляхом заборони біта зі значенням 1 як у першій, так і в останній позиції кожного бітового рядка. Дідо, Торрі і Салві використовували властивості розмальовки як кубів Фібоначчі, так і кубів Люка.
Примітки
- Hsu, 1993.
- Klavžar, 2011, с. 3—4.
- Klavžar, 2011, с. 3.
- Klavžar, 2005.
- Klavžar, 2011, с. Theorem 5.1.
- Ганснер (Gansner, 1982) каже як про «добре відомий факт», що ця ґратка має число елементів, рівне числу Фібоначчі, а Стенлі (Stanley, 1986) переносить цей факт у вправи. Див. також Höft та Höft, 1985, Beck, 1990 і Salvi та Salvi, 2008.
- Propp, 1997.
- Klavžar, 2011, с. 4—5.
- Cong, Zheng, Sharma, 1993.
- Munarini, Salvi, 2002.
- Klavžar, 2011, с. 6.
- Klavžar, 2011, с. 9.
- Taranenko, Vesel, 2007.
- Hsu, Page, Liu, 1993.
- Stojmenovic, 1998.
- Klavžar, Žigert, 2005.
- Zhang, Ou, Yao, 2009.
- Hsu, Chung, 1993.
- Hsu, Chung, Das, 1997.
- Wu, 1997.
- Dedó, Torri, Salvi, 2002.
Література
- István Beck. Partial orders and the Fibonacci numbers // . — 1990. — Т. 28, вип. 2. — С. 172–174.
- Cong B., Zheng S. Q., Sharma S. On simulations of linear arrays, rings and 2D meshes on Fibonacci cube networks // . — 1993. — С. 748–751. — DOI:10.1109/IPPS.1993.262788.
- Ernesto Dedó, Damiano Torri, Norma Zagaglia Salvi. The observability of the Fibonacci and the Lucas cubes // [en]. — 2002. — Т. 255, вип. 1–3. — С. 55–63. — DOI:10.1016/S0012-365X(01)00387-9.
- Emden R. Gansner. On the lattice of order ideals of an up-down poset // Discrete Mathematics. — 1982. — Т. 39, вип. 2. — С. 113–122. — DOI:10.1016/0012-365X(82)90134-0.
- Hartmut Höft, Margret Höft. A Fibonacci sequence of distributive lattices // . — 1985. — Т. 23, вип. 3. — С. 232–237.
- Hsu W.-J. Fibonacci cubes: a new interconnection topology // IEEE Transactions on Parallel and Distributed Systems. — 1993. — Т. 4, вип. 1. — С. 3–12. — DOI:10.1109/71.205649.
- Hsu W.-J., Chung M. J. Generalized Fibonacci cubes // 1993 International Conference on Parallel Processing - ICPP'93. — 1993. — Т. 1. — С. 299–302. — DOI:10.1109/ICPP.1993.95.
- Hsu W.-J., Page C. V., Liu J.-S. Fibonacci cubes: a class of self-similar graphs // . — 1993. — Т. 31, вип. 1. — С. 65–72.
- Hsu W.-J., Chung M. J., Das A. Linear recursive networks and their applications in distributed systems // . — 1997. — Т. 8, вип. 7. — С. 673–680. — DOI:10.1109/71.598343.
- Sandi Klavžar. On median nature and enumerative properties of Fibonacci-like cubes // Discrete Mathematics. — 2005. — Т. 299, вип. 1–3. — С. 145–153. — DOI:10.1016/j.disc.2004.02.023.
- Sandi Klavžar. Structure of Fibonacci cubes: a survey // IMFM Preprint Series. — Ljubljana, Slovenia : Institute of Mathematics, Physics and Mechanics, 2011. — Т. 49, вип. 1150.
- Sandi Klavžar, Petra Žigert. Fibonacci cubes are the resonance graphs of Fibonaccenes : [ 8 лютого 2007] // . — 2005. — Т. 43, вип. 3. — С. 269–276..
- Emanuele Munarini, Norma Zagaglia Salvi. Structural and enumerative properties of the Fibonacci cubes // Discrete Mathematics. — 2002. — Т. 255, вип. 1–3. — С. 317–324. — DOI:10.1016/S0012-365X(01)00407-1.
- James Propp. Generating random elements of finite distributive lattices // Electronic Journal of Combinatorics. — 1997. — Т. 4, вип. 2. — С. R15. — arXiv:math.CO/9801066.
- Rodolfo Salvi, Norma Zagaglia Salvi. Alternating unimodal sequences of Whitney numbers // [en]. — 2008. — Т. 87. — С. 105–117.
- Richard P. Stanley. Enumerative Combinatorics. — Wadsworth, Inc., 1986. Упражнение 3.23a, страница 157
- Ivan Stojmenovic. Optimal deadlock-free routing and broadcasting on Fibonacci cube networks : [ 25 липня 2011] // Utilitas Mathematica. — 1998. — Т. 53. — С. 159–166..
- Taranenko A., Vesel A. Fast recognition of Fibonacci cubes // Algorithmica. — 2007. — Т. 49, вип. 2. — С. 81–93. — DOI:10.1007/s00453-007-9026-5.
- Jie Wu. Extended Fibonacci cubes // IEEE Transactions on Parallel and Distributed Systems. — 1997. — Т. 8, вип. 12. — С. 1203–1210. — DOI:10.1109/71.640012.
- Heping Zhang, Lifeng Ou, Haiyuan Yao. Fibonacci-like cubes as Z-transformation graphs // Discrete Mathematics. — 2009. — Т. 309, вип. 6. — С. 1284–1293. — DOI:10.1016/j.disc.2008.01.053.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Kubi Fibonachchi abo merezhi Fibonachchi ce simejstvo neoriyentovanih grafiv z bagatimi rekursivnimi vlastivostyami sho viniklo v teoriyi chisel Matematichno ci kubi shozhi na grafi giperkuba ale z chislom vershin rivnim chislu Fibonachchi Kubi Fibonachchi vpershe yavno viznachiv u svoyij statti Syuj v konteksti vzayemozv yazkiv topologij dlya zv yazku sistem paralelnih obchislen abo rozpodilenih sistem Voni zastosovuyutsya takozh v himichnij teoriyi grafiv Kub Fibonachchi mozhna viznachiti v terminah kodiv Fibonachchi ta vidstani Gemminga nezalezhnih mnozhin vershin u shlyahah abo cherez distributivni gratki ViznachennyaKubi Fibonachchi namalovani chervonim kolorom yak pidgrafi giperkubiv Kub Fibonachchi poryadku 6 Podibno do grafa giperkuba vershini kuba Fibonachchi poryadku n mozhna poznachiti bitovimi ryadkami dovzhini n takim chinom sho dvi vershini sumizhni yaksho yihni mitki vidriznyayutsya odnim bitom Odnak v kubi Fibonachchi dozvoleni tilki mitki yaki yak bitovi ryadki ne mayut dvoh odinic pospil Ye F n 2 displaystyle F n 2 mozhlivih mitok de F n displaystyle F n poznachaye n displaystyle n e chislo Fibonachchi a tomu ye F n 2 displaystyle F n 2 vershin v kubi Fibonachchi poryadku n Vuzlam takih merezh mozhut buti priznacheni poslidovni cili chisla vid 0 displaystyle 0 do F n 2 1 displaystyle F n 2 1 Bitovi ryadki yaki vidpovidayut cim chislam zadayutsya yih podannyami Cekendorfa Algebrichna strukturaKub Fibonachchi poryadku n displaystyle n ye en dopovnennya grafa shlyahu z n displaystyle n vershinami Tobto kozhna vershina kuba Fibonachchi predstavlyaye kliku v dopovnenni shlyahu abo sho ekvivalentno v nezalezhnij mnozhini v samomu shlyahu Dvi vershini kuba Fibonachchi sumizhni yaksho kliki abo nezalezhni mnozhini yaki voni predstavlyayut vidriznyayutsya vidalennyam abo dodavannyam odnogo elementa Tomu podibno do inshih simpleksnih grafiv kubi Fibonachchi ye ru i bilsh zagalno chastkovimi kubami Mediana bud yakih troh vershin kuba Fibonachchi mozhe buti znajdena shlyahom obchislennya pobitovoyi mazhoritarnoyi funkciyi troh mitok Yaksho kozhna iz troh mitok ne maye dvoh poslidovnih bitiv 1 to ce vikonuyetsya i dlya yih mazhoritarnogo znachennya Kub Fibonachchi ye takozh grafom distributivnoyi gratki yaka mozhe buti otrimana cherez en z en chastkovo vporyadkovanoyi mnozhini viznachenoyi pochergovoyu poslidovnistyu vidnoshen a lt b gt c lt d gt e lt f gt displaystyle a lt b gt c lt d gt e lt f gt dots Ye takozh alternativnij opis movoyu teoriyi grafiv tiyeyi zh gratki nezalezhni mnozhini bud yakogo dvochastkovogo grafa mozhut buti dani v pevnomu poryadku v yakomu odna nezalezhna mnozhina mensha vid inshoyi yaksho voni otrimani shlyahom vidalennya elementiv z odniyeyi chastini i dodavannya elementiv v inshu chastinu Z cim poryadkom nezalezhni mnozhini utvoryuyut distributivnu gratku a zastosuvannya danoyi pobudovi do grafa shlyahu prizvodit do asociaciyi reshitki z kubom Fibonachchi Vlastivosti j algoritmiKub Fibonachchi poryadku n displaystyle n mozhna rozbiti na kub Fibonachchi poryadku n 1 displaystyle n 1 rozmitka vuzliv pochinayetsya z bita sho maye znachennya 0 i kub Fibonachchi poryadku n 2 displaystyle n 2 vuzli pochinayutsya z bita znachennyam 1 Bud yakij kub Fibonachchi maye gamiltoniv shlyah Konkretnishe isnuye shlyah yakij obhodit rozbittya opisane vishe vin vidviduye vuzli spochatku z 0 a potim z 1 u dvoh neperervnih pidposlidovnostyah U cih dvoh pidposlidovnostyah shlyah mozhe buti pobudovanij rekursivno za tim samim pravilom z yednuyuchi dvi pidposlidovnosti kincyami na yakih drugij bit maye znachennya 0 Todi napriklad u kubi Fibonachchi poryadku 4 poslidovnistyu pobudovanoyu takim chinom bude 0100 0101 0001 0000 0010 1010 1000 1001 de duzhki pokazuyut pidposlidovnosti dvoh pidgrafiv Kubi Fibonachchi z parnim chislom vuzliv bilshim vid dvoh mayut gamiltoniv cikl Munarini i Salvi vivchali radius i chislo nezalezhnosti kubiv Fibonachchi Oskilki ci grafi dvochastkovi i mayut gamiltoniv shlyah yihni maksimalni nezalezhni mnozhini mayut chislo vershin sho dorivnyuye polovini vershin usogo grafa okruglene do najblizhchogo cilogo Diametr kuba Fibonachchi poryadku n dorivnyuye n a jogo radius dorivnyuye n 2 znovu okruglenij do najblizhchogo cilogo Taranenko i Vesel pokazali sho mozhna pereviriti chi ye graf kubom Fibonachchi za chas blizkij do jogo rozmiru ZastosuvannyaSyuj a takozh Syuj Pejdzh i Lyu zaproponuvali vikoristovuvati kubi Fibonachchi yak merezhevu topologiyu v sistemah paralelnih obchislen Yak komunikacijna merezha kub Fibonachchi maye korisni vlastivosti podibni do vlastivostej giperkuba chislo incidentnih reber na odnu vershinu ne bilshe nizh n 2 displaystyle n 2 i diametr merezhi ne perevishuye n displaystyle n obidva znachennya proporcijni logarifma chisla vershin a mozhlivist rozbiti merezhu na menshi pidmerezhi togo zh tipu dozvolyaye rozshepiti bagato zavdan paralelnih obchislen Kubi Fibonachchi pidtrimuyut takozh efektivni protokoli dlya marshrutizaciyi i shirokomovlennya v sistemah rozpodilenih obchislen Klavzhar i Zhigert zastosuvali kubi Fibonachchi v himichnij teoriyi grafiv yak opis simejstva doskonalih paruvan deyakih molekulyarnih grafiv Dlya molekulyarnoyi strukturi opisuvanoyi planarnim grafom G displaystyle G rezonansnim grafom abo grafom Z displaystyle Z peretvorennya grafa G displaystyle G ye graf vershini yakogo opisuyut doskonali paruvannya grafa G displaystyle G a rebra yakogo z yednuyut pari doskonalih paruvan simetrichna riznicya yakih ye vnutrishnoyu grannyu grafa G displaystyle G Policiklichni aromatichni vuglevodni mozhut buti opisani yak pidgrafi shestikutnoyi mozayiki ploshini a rezonansni grafi opisuyut mozhlivi strukturi z podvijnimi zv yazkami cih molekul Yak pokazali Klavzhar i Zhigert vuglevodni utvoreni lancyuzhkami shestikutnikiv spoluchenih rebro do rebra bez troh sumizhnih shestikutnikiv na pryamij mayut rezonansni grafi yaki tochno ye grafami Fibonachchi Bilsh zagalno Chzhan Ou i Yao opisali klas planarnih dvochastkovih grafiv yaki mayut kubi Fibonachchi yak grafi rezonansu Pov yazani grafiUzagalneni kubi Fibonachchi zaproponuvali Syuj i Chzhan bazuyuchis na chislah Fibonachchi k displaystyle k go poryadku yaki piznishe Syuj Chzhan i Das gruntuyuchis na bilsh zagalnih vidah linijnih rekursij rozshirili na klas merezh nazvanih linijnimi rekursivnimi merezhami Vu modifikuvav kubi Fibonachchi drugogo poryadku gruntuyuchis na inshih pochatkovih umovah Inshij pov yazanij graf kub Lyuka z kilkistyu vershin rivnim chislu Lyuka viznachenij z kuba Fibonachchi shlyahom zaboroni bita zi znachennyam 1 yak u pershij tak i v ostannij poziciyi kozhnogo bitovogo ryadka Dido Torri i Salvi vikoristovuvali vlastivosti rozmalovki yak kubiv Fibonachchi tak i kubiv Lyuka PrimitkiHsu 1993 Klavzar 2011 s 3 4 Klavzar 2011 s 3 Klavzar 2005 Klavzar 2011 s Theorem 5 1 Gansner Gansner 1982 kazhe yak pro dobre vidomij fakt sho cya gratka maye chislo elementiv rivne chislu Fibonachchi a Stenli Stanley 1986 perenosit cej fakt u vpravi Div takozh Hoft ta Hoft 1985 Beck 1990 i Salvi ta Salvi 2008 Propp 1997 Klavzar 2011 s 4 5 Cong Zheng Sharma 1993 Munarini Salvi 2002 Klavzar 2011 s 6 Klavzar 2011 s 9 Taranenko Vesel 2007 Hsu Page Liu 1993 Stojmenovic 1998 Klavzar Zigert 2005 Zhang Ou Yao 2009 Hsu Chung 1993 Hsu Chung Das 1997 Wu 1997 Dedo Torri Salvi 2002 LiteraturaIstvan Beck Partial orders and the Fibonacci numbers 1990 T 28 vip 2 S 172 174 Cong B Zheng S Q Sharma S On simulations of linear arrays rings and 2D meshes on Fibonacci cube networks 1993 S 748 751 DOI 10 1109 IPPS 1993 262788 Ernesto Dedo Damiano Torri Norma Zagaglia Salvi The observability of the Fibonacci and the Lucas cubes en 2002 T 255 vip 1 3 S 55 63 DOI 10 1016 S0012 365X 01 00387 9 Emden R Gansner On the lattice of order ideals of an up down poset Discrete Mathematics 1982 T 39 vip 2 S 113 122 DOI 10 1016 0012 365X 82 90134 0 Hartmut Hoft Margret Hoft A Fibonacci sequence of distributive lattices 1985 T 23 vip 3 S 232 237 Hsu W J Fibonacci cubes a new interconnection topology IEEE Transactions on Parallel and Distributed Systems 1993 T 4 vip 1 S 3 12 DOI 10 1109 71 205649 Hsu W J Chung M J Generalized Fibonacci cubes 1993 International Conference on Parallel Processing ICPP 93 1993 T 1 S 299 302 DOI 10 1109 ICPP 1993 95 Hsu W J Page C V Liu J S Fibonacci cubes a class of self similar graphs 1993 T 31 vip 1 S 65 72 Hsu W J Chung M J Das A Linear recursive networks and their applications in distributed systems 1997 T 8 vip 7 S 673 680 DOI 10 1109 71 598343 Sandi Klavzar On median nature and enumerative properties of Fibonacci like cubes Discrete Mathematics 2005 T 299 vip 1 3 S 145 153 DOI 10 1016 j disc 2004 02 023 Sandi Klavzar Structure of Fibonacci cubes a survey IMFM Preprint Series Ljubljana Slovenia Institute of Mathematics Physics and Mechanics 2011 T 49 vip 1150 Sandi Klavzar Petra Zigert Fibonacci cubes are the resonance graphs of Fibonaccenes 8 lyutogo 2007 2005 T 43 vip 3 S 269 276 Emanuele Munarini Norma Zagaglia Salvi Structural and enumerative properties of the Fibonacci cubes Discrete Mathematics 2002 T 255 vip 1 3 S 317 324 DOI 10 1016 S0012 365X 01 00407 1 James Propp Generating random elements of finite distributive lattices Electronic Journal of Combinatorics 1997 T 4 vip 2 S R15 arXiv math CO 9801066 Rodolfo Salvi Norma Zagaglia Salvi Alternating unimodal sequences of Whitney numbers en 2008 T 87 S 105 117 Richard P Stanley Enumerative Combinatorics Wadsworth Inc 1986 Uprazhnenie 3 23a stranica 157 Ivan Stojmenovic Optimal deadlock free routing and broadcasting on Fibonacci cube networks 25 lipnya 2011 Utilitas Mathematica 1998 T 53 S 159 166 Taranenko A Vesel A Fast recognition of Fibonacci cubes Algorithmica 2007 T 49 vip 2 S 81 93 DOI 10 1007 s00453 007 9026 5 Jie Wu Extended Fibonacci cubes IEEE Transactions on Parallel and Distributed Systems 1997 T 8 vip 12 S 1203 1210 DOI 10 1109 71 640012 Heping Zhang Lifeng Ou Haiyuan Yao Fibonacci like cubes as Z transformation graphs Discrete Mathematics 2009 T 309 vip 6 S 1284 1293 DOI 10 1016 j disc 2008 01 053