Завдання про найдовший шлях — це задача пошуку простого шляху найбільшої довжини в заданому графі. Шлях називається простим, якщо в ньому немає повторних вершин. Довжину шляху можна виміряти або числом ребер, або (в разі зважених графів) сумою ваг його ребер. На відміну від задачі про найкоротший шлях, яку на графах без циклів з від'ємною вагою можна розв'язати за поліноміальний час, задача пошуку найдовшого шляху є NP-складною і не може бути розв'язаною за поліноміальний час для довільного графа, якщо не P = NP. Належність до вищого класу складності також означає, що задачу складно апроксимувати. Однак задача розв'язується за лінійний час на орієнтованих ациклічних графах, які мають важливе застосування в задачах знаходження критичного шляху в задачах планування.
NP-складність
NP-складність незваженої задачі пошуку найдовшого шляху можна показати, звівши задачу до пошуку гамільтонового шляху — граф G має гамільтонів шлях тоді й лише тоді, коли найдовший шлях у ньому має довжину n − 1, де n — число вершин графа G. Оскільки задача пошуку гамільтонового шляху є NP-повною, це зведення показує, що задача пошуку найдовшого шляху у варіанті розв'язності також NP-повна. У цій задачі розв'язності входом є граф G і число k. Очікується вихід «так», якщо G містить шлях з k і більше дугами, або ні в іншому разі.
Якби задачу пошуку найдовшого шляху можна було розв'язати за поліноміальний час, її можна було б використати для розв'язання цієї задачі розв'язності, знайшовши найдовший шлях та порівнявши його довжину з числом k. Таким чином, задача пошуку найдовшого шляху є NP-складною. Вона не є NP-повною, оскільки вона не є задачею розв'язності.
У зважених повних графах із невід'ємними вагами ребер задача пошуку зваженого найдовшого шляху є тією ж задачею, що й задача комівояжера, оскільки найдовший шлях завжди включає всі вершини цієї задачі.
Ациклічні графи та критичні шляхи
Найдовший шлях A між двома заданими вершинами s і t у зваженому графі G — це те саме, що й найкоротший шлях у графі −G, отриманому з G заміною всіх ваг на ваги з протилежним знаком. Отже, якщо можна знайти найкоротший шлях в −G, то можна знайти і найдовший шлях у G.
Для більшості графів таке перетворення марне, оскільки створює в −G цикли від'ємної довжини. Але якщо G є спрямованим ациклічним графом, від'ємний цикл створити неможливо і найдовший шлях у G можна знайти за лінійний час, застосувавши алгоритм пошуку найкоротшого шляху в −G (теж орієнтованому ациклічному графі), який працює за лінійний час . Наприклад, для будь-якої вершини v в орієнтованому ациклічному графі довжину найдовшого шляху, що закінчується у v, можна отримати, виконавши такі кроки: Коли це буде зроблено, найдовший шлях у всьому графі можна отримати, почавши з вершини v з найбільшим записаним значенням і проходячи у зворотному порядку, вибираючи вхідну дугу, в якої запис у початковій вершині має найбільше значення.
Метод критичного шляху для планування набору робіт використовує побудову орієнтованого ациклічного графа, в якому вершини представляють вузлові події проекту, а дуги представляють роботи, які мають бути виконані до вузлової події і після неї. Кожній дузі присвоюється вага, що дорівнює оцінці часу виконання роботи. У такому графі найдовший шлях від першої вузлової події до останньої є критичним шляхом, який визначає повний час завершення проєкту.
Найдовший шлях орієнтованих ациклічних графів можна застосувати також для — розміщуємо кожну вершину v орієнтованого ациклічного графа G на рівні, номер якого відповідає довжині найдовшого шляху, що закінчується у v. В результаті отримаємо розташування вершин за рівнями, за якого кількість рівнів буде найменшою.
Наближення
Бьорклунд, Гасфелдт і Канна писали, що задача пошуку найдовшого шляху в незваженому неорієнтованому графі є «сумно відомою за складністю розуміння труднощів її апроксимації». Найкращий відомий алгоритм апроксимації поліноміального часу виконання дає лише дуже слабку апроксимацію, . Для будь-якого неможливо апроксимувати найдовший шлях із множником, меншим від , якщо тільки NP не належить до задач квазіполіноміального детермінованого часу. Однак існує великий розрив між цим результатом апроксимованості та відомими алгоритмами апроксимації для цієї задачі.
У разі незважених, але орієнтованих графів відомі сильні результати апроксимованості. Для будь-якого задачу не можна апроксимувати в межах , якщо тільки не P = NP, і, за сильних теоретичних припущень, задачу не можна апроксимувати в межах . Для пошуку шляху логарифмічної довжини, якщо він існує, можна використати техніку [en], але вона дає апроксимаційний коефіцієнт лише .
Параметризована складність
Задача пошуку найдовшого шляху є [en], якщо параметризувати її за довжиною шляху. Наприклад, задачу можна розв'язати за час, що лінійно залежить від розміру вхідного графа (але за експоненційний час за довжиною шляху), за допомогою алгоритму, що включає такі кроки:
- Здійснюємо пошук у глибину за графом. Нехай — глибина кінцевого дерева пошуку вглиб.
- Використовуємо шляхи від кореня до листів пошуку дерева вглиб у порядку, в якому вони переглядаються під час пошуку, на відміну від шляхової декомпозиції графа зі шляховою шириною .
- Використовуємо динамічне програмування до цього розкладу на шляхи для знаходження найдовшого шляху за час , де — число вершин графа.
Оскільки початковий шлях має довжину щонайменше , час роботи також буде обмежено значенням , де — довжина найдовшого шляху. Використовуючи колірне кодування, залежність від довжини шляху можна звести до одинично експоненційної. Схожа техніка динамічного програмування показує, що задача пошуку найдовшого шляху є також фіксовано-параметрично розв'язною за деревною шириною графа.
Для графів з обмеженою кліковою шириною задачу про найдовший шлях можна розв'язати за поліноміальний час за допомогою алгоритму динамічного програмування. Однак степінь полінома залежить від клікової ширини графа, тому ці алгоритми не є фіксовано-параметрично розв'язними. Задача знаходження найдовшого шляху, параметризована за кліковою шириною, є складною для класу [en] , що говорить про те, що навряд чи існує фіксовано-параметрично розв'язний алгоритм.
Особливі випадки графів
Задача про найдовший шлях можна розв'язати за поліноміальний час на доповненнях графів порівнянності. Також її можна розв'язати за поліноміальний час на будь-якому класі графів із обмеженою деревною шириною або обмеженою кліковою шириною, такому як дистанційно-успадковувані графи. Однак задача є NP-складною, навіть якщо обмежитися розщеплюваними графами, коловими графами або планарними графами.
Див. також
- , двоїстість найдовшого шляху та розфарбування графів
- Задача про хід коня
- Задача про змію в коробці, найдовший породжений шлях у графі гіперкуба
Примітки
- Schrijver, 2003, с. 114.
- Cormen, Leiserson, Rivest, Stein, 2001, с. 978.
- Lawler, 2001, с. 64.
- Sedgewick, Wayne, 2011, с. 661–666.
- Di Battista, Eades, Tamassia, Tollis, 1998, с. 265–302.
- Björklund, Husfeldt, Khanna, 2004, с. 222–233.
- (Gabow, Nie, 2008). Раніші праці навіть зі слабшою апроксимацією див. у статтях Габова (Gabow, 2007) та Б'єрклунда і Гасфелдта (Björklund, Husfeldt, 2003).
- Karger, Motwani, Ramkumar, 1997, с. 82–98.
- Alon, Yuster, Zwick, 1995.
- (Bodlaender, 1993). Раніший фіксовано-параметрично розв'язний алгоритм із трохи кращою залежністю від довжини шляху, але з гіршою залежністю від довжини графа, див. у статті (Monien, 1985).
- Chen, Lu, Sze, Zhang, 2007, с. 298-307.
- Koutis, 2008, с. 575-586.
- Williams, 2009, с. 315-318.
- Fomin, Golovach, Lokshtanov, Saurabh, 2009, с. 825–834.
- (Ioannidou, Nikolopoulos, 2011). Раніші праці на більш обмежених класах див. у статтях (Ioannidou, Mertzios, Nikolopoulos, 2011) і (Uehara, Valiente, 2007).
- Ioannidou, Mertzios, Nikolopoulos, 2011.
Література
- Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. — Springer, 2003. — Т. 24. — (Algorithms and Combinatorics) — .
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction To Algorithms. — MIT Press, 2001. — .
- Robert Sedgewick, Kevin Daniel Wayne. Algorithms. — Addison-Wesley Professional, 2011. — С. 661—666. — .
- Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids. — Courier Dover Publications, 2001. — С. 64. — .
- Giuseppe Di Battista, Peter Eades, Roberto Tamassia, Ioannis G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. — Prentice Hall, 1998. — С. 265—302. — .
- Andreas Björklund, Thore Husfeldt, Sanjeev Khanna. Proc. Int. Coll. Automata, Languages and Programming (ICALP 2004). — Berlin : Springer-Verlag, 2004. — Т. 3142. — С. 222—233. — ()
- Harold N. Gabow, Shuxin Nie. International Symposium on Algorithms and Computation. — Berlin : Springer, 2008. — Т. 5369. — С. 752—763. — (Lecture Notes in Computer Science) — DOI:
- Harold N. Gabow. Finding paths and cycles of superpolylogarithmic length // SIAM Journal on Computing. — 2007. — Т. 36, вип. 6. — С. 1648—1671. — DOI: .
- Andreas Björklund, Thore Husfeldt. Finding a path of superlogarithmic length // . — 2003. — Т. 32, вип. 6. — С. 1395—1402. — DOI: .
- David Karger, Rajeev Motwani, G. D. S. Ramkumar. On approximating the longest path in a graph // . — 1997. — Т. 18, вип. 1. — С. 82—98. — DOI: .
- Noga Alon, Raphael Yuster, Uri Zwick. Color-coding // . — 1995. — Т. 42, вип. 4. — С. 844—856. — DOI: .
- Hans L. Bodlaender. On linear time minor tests with depth-first search // Journal of Algorithms. — 1993. — Т. 14, вип. 1. — С. 1—23. — DOI: .
- B. Monien. Analysis and design of algorithms for combinatorial problems (Udine, 1982). — Amsterdam : North-Holland, 1985. — Т. 109. — С. 239—254. — (North-Holland Math. Stud.) — DOI:
- Jianer Chen, Songjian Lu, Sing-Hoi Sze, Fenghui Zhang. Proc. 18th ACM-SIAM Symposium on Discrete algorithms (SODA '07). — 2007. — С. 298—307.
- Ioannis Koutis. International Colloquium on Automata, Languages and Programming. — Berlin : Springer, 2008. — Т. 5125. — С. 575—586. — (Lecture Notes in Computer Science) — DOI:
- Ryan Williams. Finding paths of length k in O*(2k) time // Information Processing Letters. — 2009. — Т. 109, вип. 6. — С. 315—318. — arXiv:0807.3026. — DOI: .
- Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh. Proc. 20th ACM-SIAM Symposium on Discrete Algorithms (SODA '09). — 2009. — С. 825—834.
- Kyriaki Ioannidou, Stavros D. Nikolopoulos. The longest path problem is polynomial on cocomparability graphs // Algorithmica. — 2011. — DOI: .
- Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos. The longest path problem has a polynomial solution on interval graphs // . — 2011. — Т. 61, вип. 2. — С. 320—341. — DOI: .
- Ryuhei Uehara, Gabriel Valiente. Linear structure of bipartite permutation graphs and the longest path problem // Information Processing Letters. — 2007. — Т. 103, вип. 2. — С. 71—77. — DOI: .
- Метод нечёткого критического пути / Акимов В. А., , Заложнев А. Ю. // Управление большими системами. Выпуск 3. М.: ИПУ РАН, 2003. С. 5-10.
Посилання
- «Find the Longest Path», пісня Дена Барретта (Dan Barrett)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Zavdannya pro najdovshij shlyah ce zadacha poshuku prostogo shlyahu najbilshoyi dovzhini v zadanomu grafi Shlyah nazivayetsya prostim yaksho v nomu nemaye povtornih vershin Dovzhinu shlyahu mozhna vimiryati abo chislom reber abo v razi zvazhenih grafiv sumoyu vag jogo reber Na vidminu vid zadachi pro najkorotshij shlyah yaku na grafah bez cikliv z vid yemnoyu vagoyu mozhna rozv yazati za polinomialnij chas zadacha poshuku najdovshogo shlyahu ye NP skladnoyu i ne mozhe buti rozv yazanoyu za polinomialnij chas dlya dovilnogo grafa yaksho ne P NP Nalezhnist do vishogo klasu skladnosti takozh oznachaye sho zadachu skladno aproksimuvati Odnak zadacha rozv yazuyetsya za linijnij chas na oriyentovanih aciklichnih grafah yaki mayut vazhlive zastosuvannya v zadachah znahodzhennya kritichnogo shlyahu v zadachah planuvannya NP skladnistDokladnishe Klas skladnosti NP NP skladnist nezvazhenoyi zadachi poshuku najdovshogo shlyahu mozhna pokazati zvivshi zadachu do poshuku gamiltonovogo shlyahu graf G maye gamiltoniv shlyah todi j lishe todi koli najdovshij shlyah u nomu maye dovzhinu n 1 de n chislo vershin grafa G Oskilki zadacha poshuku gamiltonovogo shlyahu ye NP povnoyu ce zvedennya pokazuye sho zadacha poshuku najdovshogo shlyahu u varianti rozv yaznosti takozh NP povna U cij zadachi rozv yaznosti vhodom ye graf G i chislo k Ochikuyetsya vihid tak yaksho G mistit shlyah z k i bilshe dugami abo ni v inshomu razi Yakbi zadachu poshuku najdovshogo shlyahu mozhna bulo rozv yazati za polinomialnij chas yiyi mozhna bulo b vikoristati dlya rozv yazannya ciyeyi zadachi rozv yaznosti znajshovshi najdovshij shlyah ta porivnyavshi jogo dovzhinu z chislom k Takim chinom zadacha poshuku najdovshogo shlyahu ye NP skladnoyu Vona ne ye NP povnoyu oskilki vona ne ye zadacheyu rozv yaznosti U zvazhenih povnih grafah iz nevid yemnimi vagami reber zadacha poshuku zvazhenogo najdovshogo shlyahu ye tiyeyu zh zadacheyu sho j zadacha komivoyazhera oskilki najdovshij shlyah zavzhdi vklyuchaye vsi vershini ciyeyi zadachi Aciklichni grafi ta kritichni shlyahiNajdovshij shlyah A mizh dvoma zadanimi vershinami s i t u zvazhenomu grafi G ce te same sho j najkorotshij shlyah u grafi G otrimanomu z G zaminoyu vsih vag na vagi z protilezhnim znakom Otzhe yaksho mozhna znajti najkorotshij shlyah v G to mozhna znajti i najdovshij shlyah u G Dlya bilshosti grafiv take peretvorennya marne oskilki stvoryuye v G cikli vid yemnoyi dovzhini Ale yaksho G ye spryamovanim aciklichnim grafom vid yemnij cikl stvoriti nemozhlivo i najdovshij shlyah u G mozhna znajti za linijnij chas zastosuvavshi algoritm poshuku najkorotshogo shlyahu v G tezh oriyentovanomu aciklichnomu grafi yakij pracyuye za linijnij chas Napriklad dlya bud yakoyi vershini v v oriyentovanomu aciklichnomu grafi dovzhinu najdovshogo shlyahu sho zakinchuyetsya u v mozhna otrimati vikonavshi taki kroki Koli ce bude zrobleno najdovshij shlyah u vsomu grafi mozhna otrimati pochavshi z vershini v z najbilshim zapisanim znachennyam i prohodyachi u zvorotnomu poryadku vibirayuchi vhidnu dugu v yakoyi zapis u pochatkovij vershini maye najbilshe znachennya Metod kritichnogo shlyahu dlya planuvannya naboru robit vikoristovuye pobudovu oriyentovanogo aciklichnogo grafa v yakomu vershini predstavlyayut vuzlovi podiyi proektu a dugi predstavlyayut roboti yaki mayut buti vikonani do vuzlovoyi podiyi i pislya neyi Kozhnij duzi prisvoyuyetsya vaga sho dorivnyuye ocinci chasu vikonannya roboti U takomu grafi najdovshij shlyah vid pershoyi vuzlovoyi podiyi do ostannoyi ye kritichnim shlyahom yakij viznachaye povnij chas zavershennya proyektu Najdovshij shlyah oriyentovanih aciklichnih grafiv mozhna zastosuvati takozh dlya rozmishuyemo kozhnu vershinu v oriyentovanogo aciklichnogo grafa G na rivni nomer yakogo vidpovidaye dovzhini najdovshogo shlyahu sho zakinchuyetsya u v V rezultati otrimayemo roztashuvannya vershin za rivnyami za yakogo kilkist rivniv bude najmenshoyu NablizhennyaBorklund Gasfeldt i Kanna pisali sho zadacha poshuku najdovshogo shlyahu v nezvazhenomu neoriyentovanomu grafi ye sumno vidomoyu za skladnistyu rozuminnya trudnoshiv yiyi aproksimaciyi Najkrashij vidomij algoritm aproksimaciyi polinomialnogo chasu vikonannya daye lishe duzhe slabku aproksimaciyu n exp W log n displaystyle n exp Omega sqrt log n Dlya bud yakogo ϵ gt 0 displaystyle epsilon gt 0 nemozhlivo aproksimuvati najdovshij shlyah iz mnozhnikom menshim vid 2 log n 1 ϵ displaystyle 2 log n 1 epsilon yaksho tilki NP ne nalezhit do zadach kvazipolinomialnogo determinovanogo chasu Odnak isnuye velikij rozriv mizh cim rezultatom aproksimovanosti ta vidomimi algoritmami aproksimaciyi dlya ciyeyi zadachi U razi nezvazhenih ale oriyentovanih grafiv vidomi silni rezultati aproksimovanosti Dlya bud yakogo ϵ gt 0 displaystyle epsilon gt 0 zadachu ne mozhna aproksimuvati v mezhah n 1 ϵ displaystyle n 1 epsilon yaksho tilki ne P NP i za silnih teoretichnih pripushen zadachu ne mozhna aproksimuvati v mezhah n log 2 ϵ n displaystyle n log 2 epsilon n Dlya poshuku shlyahu logarifmichnoyi dovzhini yaksho vin isnuye mozhna vikoristati tehniku en ale vona daye aproksimacijnij koeficiyent lishe O n log n displaystyle O n log n Parametrizovana skladnistZadacha poshuku najdovshogo shlyahu ye en yaksho parametrizuvati yiyi za dovzhinoyu shlyahu Napriklad zadachu mozhna rozv yazati za chas sho linijno zalezhit vid rozmiru vhidnogo grafa ale za eksponencijnij chas za dovzhinoyu shlyahu za dopomogoyu algoritmu sho vklyuchaye taki kroki Zdijsnyuyemo poshuk u glibinu za grafom Nehaj d displaystyle d glibina kincevogo dereva poshuku vglib Vikoristovuyemo shlyahi vid korenya do listiv poshuku dereva vglib u poryadku v yakomu voni pereglyadayutsya pid chas poshuku na vidminu vid shlyahovoyi dekompoziciyi grafa zi shlyahovoyu shirinoyu d displaystyle d Vikoristovuyemo dinamichne programuvannya do cogo rozkladu na shlyahi dlya znahodzhennya najdovshogo shlyahu za chas O d 2 d n displaystyle O d 2 d n de n displaystyle n chislo vershin grafa Oskilki pochatkovij shlyah maye dovzhinu shonajmenshe d displaystyle d chas roboti takozh bude obmezheno znachennyam O ℓ 2 ℓ n displaystyle O ell 2 ell n de ℓ displaystyle ell dovzhina najdovshogo shlyahu Vikoristovuyuchi kolirne koduvannya zalezhnist vid dovzhini shlyahu mozhna zvesti do odinichno eksponencijnoyi Shozha tehnika dinamichnogo programuvannya pokazuye sho zadacha poshuku najdovshogo shlyahu ye takozh fiksovano parametrichno rozv yaznoyu za derevnoyu shirinoyu grafa Dlya grafiv z obmezhenoyu klikovoyu shirinoyu zadachu pro najdovshij shlyah mozhna rozv yazati za polinomialnij chas za dopomogoyu algoritmu dinamichnogo programuvannya Odnak stepin polinoma zalezhit vid klikovoyi shirini grafa tomu ci algoritmi ne ye fiksovano parametrichno rozv yaznimi Zadacha znahodzhennya najdovshogo shlyahu parametrizovana za klikovoyu shirinoyu ye skladnoyu dlya klasu en W 1 displaystyle W 1 sho govorit pro te sho navryad chi isnuye fiksovano parametrichno rozv yaznij algoritm Osoblivi vipadki grafivZadacha pro najdovshij shlyah mozhna rozv yazati za polinomialnij chas na dopovnennyah grafiv porivnyannosti Takozh yiyi mozhna rozv yazati za polinomialnij chas na bud yakomu klasi grafiv iz obmezhenoyu derevnoyu shirinoyu abo obmezhenoyu klikovoyu shirinoyu takomu yak distancijno uspadkovuvani grafi Odnak zadacha ye NP skladnoyu navit yaksho obmezhitisya rozsheplyuvanimi grafami kolovimi grafami abo planarnimi grafami Div takozh dvoyistist najdovshogo shlyahu ta rozfarbuvannya grafiv Zadacha pro hid konya Zadacha pro zmiyu v korobci najdovshij porodzhenij shlyah u grafi giperkubaPrimitkiSchrijver 2003 s 114 Cormen Leiserson Rivest Stein 2001 s 978 Lawler 2001 s 64 Sedgewick Wayne 2011 s 661 666 Di Battista Eades Tamassia Tollis 1998 s 265 302 Bjorklund Husfeldt Khanna 2004 s 222 233 Gabow Nie 2008 Ranishi praci navit zi slabshoyu aproksimaciyeyu div u stattyah Gabova Gabow 2007 ta B yerklunda i Gasfeldta Bjorklund Husfeldt 2003 Karger Motwani Ramkumar 1997 s 82 98 Alon Yuster Zwick 1995 Bodlaender 1993 Ranishij fiksovano parametrichno rozv yaznij algoritm iz trohi krashoyu zalezhnistyu vid dovzhini shlyahu ale z girshoyu zalezhnistyu vid dovzhini grafa div u statti Monien 1985 Chen Lu Sze Zhang 2007 s 298 307 Koutis 2008 s 575 586 Williams 2009 s 315 318 Fomin Golovach Lokshtanov Saurabh 2009 s 825 834 Ioannidou Nikolopoulos 2011 Ranishi praci na bilsh obmezhenih klasah div u stattyah Ioannidou Mertzios Nikolopoulos 2011 i Uehara Valiente 2007 Ioannidou Mertzios Nikolopoulos 2011 LiteraturaAlexander Schrijver Combinatorial Optimization Polyhedra and Efficiency Springer 2003 T 24 Algorithms and Combinatorics ISBN 9783540443896 Thomas H Cormen Charles E Leiserson Ronald L Rivest Clifford Stein Introduction To Algorithms MIT Press 2001 ISBN 9780262032933 Robert Sedgewick Kevin Daniel Wayne Algorithms Addison Wesley Professional 2011 S 661 666 ISBN 9780321573513 Eugene L Lawler Combinatorial Optimization Networks and Matroids Courier Dover Publications 2001 S 64 ISBN 9780486414539 Giuseppe Di Battista Peter Eades Roberto Tamassia Ioannis G Tollis Graph Drawing Algorithms for the Visualization of Graphs Prentice Hall 1998 S 265 302 ISBN 978 0 13 301615 4 Andreas Bjorklund Thore Husfeldt Sanjeev Khanna Proc Int Coll Automata Languages and Programming ICALP 2004 Berlin Springer Verlag 2004 T 3142 S 222 233 Harold N Gabow Shuxin Nie International Symposium on Algorithms and Computation Berlin Springer 2008 T 5369 S 752 763 Lecture Notes in Computer Science DOI 10 1007 978 3 540 92182 0 66 Harold N Gabow Finding paths and cycles of superpolylogarithmic length SIAM Journal on Computing 2007 T 36 vip 6 S 1648 1671 DOI 10 1137 S0097539704445366 Andreas Bjorklund Thore Husfeldt Finding a path of superlogarithmic length 2003 T 32 vip 6 S 1395 1402 DOI 10 1137 S0097539702416761 David Karger Rajeev Motwani G D S Ramkumar On approximating the longest path in a graph 1997 T 18 vip 1 S 82 98 DOI 10 1007 BF02523689 Noga Alon Raphael Yuster Uri Zwick Color coding 1995 T 42 vip 4 S 844 856 DOI 10 1145 210332 210337 Hans L Bodlaender On linear time minor tests with depth first search Journal of Algorithms 1993 T 14 vip 1 S 1 23 DOI 10 1006 jagm 1993 1001 B Monien Analysis and design of algorithms for combinatorial problems Udine 1982 Amsterdam North Holland 1985 T 109 S 239 254 North Holland Math Stud DOI 10 1016 S0304 0208 08 73110 4 Jianer Chen Songjian Lu Sing Hoi Sze Fenghui Zhang Proc 18th ACM SIAM Symposium on Discrete algorithms SODA 07 2007 S 298 307 Ioannis Koutis International Colloquium on Automata Languages and Programming Berlin Springer 2008 T 5125 S 575 586 Lecture Notes in Computer Science DOI 10 1007 978 3 540 70575 8 47 Ryan Williams Finding paths of length k in O 2k time Information Processing Letters 2009 T 109 vip 6 S 315 318 arXiv 0807 3026 DOI 10 1016 j ipl 2008 11 004 Fedor V Fomin Petr A Golovach Daniel Lokshtanov Saket Saurabh Proc 20th ACM SIAM Symposium on Discrete Algorithms SODA 09 2009 S 825 834 Kyriaki Ioannidou Stavros D Nikolopoulos The longest path problem is polynomial on cocomparability graphs Algorithmica 2011 DOI 10 1007 s00453 011 9583 5 Kyriaki Ioannidou George B Mertzios Stavros D Nikolopoulos The longest path problem has a polynomial solution on interval graphs 2011 T 61 vip 2 S 320 341 DOI 10 1007 s00453 010 9411 3 Ryuhei Uehara Gabriel Valiente Linear structure of bipartite permutation graphs and the longest path problem Information Processing Letters 2007 T 103 vip 2 S 71 77 DOI 10 1016 j ipl 2007 02 010 Metod nechyotkogo kriticheskogo puti Akimov V A Zalozhnev A Yu Upravlenie bolshimi sistemami Vypusk 3 M IPU RAN 2003 S 5 10 Posilannya Find the Longest Path pisnya Dena Barretta Dan Barrett