Фрактальна розмірність, D, — поняття фрактальної геометрії, що означає статистичну величину, яка говорить про те наскільки повно фрактал заповнює простір, коли збільшувати його до дрібніших деталей.
Існує багато специфічних визначень фрактальної розмірності. Найважливішими теоретичними фрактальними розмірностями є розмірність Реній, розмірність Гаусдорфа, . На практиці, розмірність Мінковського і [en] широко застосовуються через їхню простоту використання. Хоч для деяких фракталів всі ці розмірності збігаються, загалом вони не є еквівалентними.
Наприклад, розмірність сніжинки Коха має топологічну розмірність, але вона не є кривою в жодному разі: довжина кривої між двома точками сніжинки Коха є нескінченною. Жоден найменший шматок цієї кривої не є подібним до лінії, але не є він чимось подібним до шматочку площини тощо. Можна сказати, що цей шматочок є занадто «товстим» щоб класифікувати його як одновимірний об'єкт, але він занадто «тонкий» щоб класифікувати його як двовимірний об'єкт. Тобто розмірність цього об'єкта є числом між одиницею і двійкою.
Специфічні визначення
Існує два підходи для генерації фрактальної структури. Один з них — це вирощування з одиничного об'єкта (рис. 1), інший — сконструювати подальші розмірності вихідної структури, наприклад трикутник Серпінського (рис. 2). Тут ми слідуємо другому підходу для визначення розмірності фрактального об'єкта (див. рис. 1).
Якщо ми візьмемо об'єкт з лінійним розміром що дорівнює 1 і припустимо що цей об'єкт знаходиться в евклідовому просторі , зменшимо його лінійний розмір на в кожному напрямку в просторі, він має самоподібних об'єктів для того щоб покрити вихідний об'єкт. (Рис. 1). Розмірність визначена як
(де логарифм може мати будь-яку основу) досі дорівнює її топологічній або Евклідовій розмірності. Використовуючи це рівняння для фрактальної структури, ми отримаємо її розмірність (яка є більш-менш гаусдорфовою розмірністю), що не буде цілим числом як і передбачалось.
де (ε) — це число самоподібних структур лінійного розміру ε, необхідних для покриття всієї структури.
Наприклад, фрактальна розмірність трикутника Серпінського (Рис. 2) визначається як
Подібним до цього є розмірність Мінковського, що розглядає випадок поділу простору на сітку кубиків, що мають розмір ε. Проводиться підрахунок скільки таких кубиків буде містити частину атрактор. Знову,
Інші величини розмірності включають інформаційну розмірність, яка розглядає яка середня ентропія потрібна для визначення заповнених кубиків коли розмір кубиків зменшується:
і , яку напевне підраховувати найлегше,
де M — це число точок, що використовувались для генерації фракталу або атрактору, і gε — це число пар точок, що знаходять ближче одна до одної, ніж is ε.
Розмірності Рені
Розмірність Мінковського, інформаційна та кореляційна розмірності можуть бути розглянуті як часткові випадки неперервного спектру загальної або порядку α, що визначається як
де чисельник це границя в порядку α. Розмірність Рені з α=0 розглядає усі частини підтримки атрактору однаково; однак для більших значень α важливіше значення надається частинам атрактора, які відвідуються найчастіше.
Атрактор для якого розмірності Рені не рівні називається мультифракталом, або таким що має мультифрактальну структуру. Це ознака того що фрактал має різну розмірність в різних його частинах.
Визначення фрактальної розмірності з реальних даних
Способи вимірювання фрактальної розмірності, описані вище, виведені для фракталів, які визначені формально. Однак, живі організми і явища природи мають фрактальні властивості (див. (Фрактали у природі)), тому часто корисно охарактеризивувати фрактальну розмірність набору виборок даних. Фрактальна розмірність не може бути виведена точно, але може бути оцінена. Це використовується в багатьох сферах досліджень, включаючи фізику, аналіз зображень, акустику, дзета нулі Рімана, електрохімічні процеси. Оцінки фрактальної розмірності дуже чутиливі до шуму в експериментальних даних, особливо до обмежень в кількості даних. Потрібно бути обережним з висновками щодо визначеної фрактальної розмірності для малорозмірної динамічної поведінки, за винятком коли використовується велика кількість даних.
Див. також
Примітки
- . Архів оригіналу за 13 травня 2008. Процитовано 17 липня 2010.
- Vicsek, Tamás (2001). Fluctuations and scaling in biology. Oxford [Oxfordshire]: Oxford University Press. ISBN .
- B. Dubuc, J. F. Quiniou, C. Roques-Carmes, C. Tricot, and S. W. Zucker (1989). Evaluating the fractal dimension of profiles. Phys. Rev. A. 39: 1500—12. doi:10.1103/PhysRevA.39.1500.
- P. Soille and J.-F. Rivest (1996). (PDF). Journal of Visual Communication and Image Representation. 7: 217—229. doi:10.1006/jvci.1996.0020. Архів оригіналу (PDF) за 20 липня 2011. Процитовано 17 липня 2010.
- Tolle, C. R., McJunkin, T. R., and Gorisch, D. J. (January 2003). Suboptimal Minimum Cluster Volume Cover-Based Method for Measuring Fractal Dimension. IEEE Trans. Pattern Anal. Mach. Intell. 25 (1): 32—41. doi:10.1109/TPAMI.2003.1159944.
- P. Maragos and A. Potamianos (1999). Fractal dimensions of speech sounds: Computation and application to automatic speech recognition. Journal of the Acoustical Society of America. 105 (3): 1925. doi:10.1121/1.426738. PMID 10089613.
- O. Shanker (2006). Random matrices, generalized zeta functions and self-similarity of zero distributions. J. Phys. A: Math. Gen. 39: 13983—97. doi:10.1088/0305-4470/39/45/008.
- (2004). Fractal Dimension of Electrochemical Reactions. Journal of the Electrochemical Society. 151 (9): E291—6. doi:10.1149/1.1773583.
Посилання
- Mandelbrot, Benoît B., The (Mis)Behavior of Markets, A Fractal View of Risk, Ruin and Reward (Basic Books, 2004)
Ланки
- TruSoft's Benoit — Fractal Analysis Software product calculates fractal dimensions and hurst exponents. [ 8 березня 2022 у Wayback Machine.]
- Fractal Dimension Estimator Java Applet [ 26 січня 2011 у Wayback Machine.]
- What fractal dimension is, and how this is the core concept defining what fractals themselves are [ 16 грудня 2017 у Wayback Machine.]
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Fraktalna rozmirnist D ponyattya fraktalnoyi geometriyi sho oznachaye statistichnu velichinu yaka govorit pro te naskilki povno fraktal zapovnyuye prostir koli zbilshuvati jogo do dribnishih detalej Pershi chotiri iteraciyi krivoyi Koha Isnuye bagato specifichnih viznachen fraktalnoyi rozmirnosti Najvazhlivishimi teoretichnimi fraktalnimi rozmirnostyami ye rozmirnist Renij rozmirnist Gausdorfa Na praktici rozmirnist Minkovskogo i en shiroko zastosovuyutsya cherez yihnyu prostotu vikoristannya Hoch dlya deyakih fraktaliv vsi ci rozmirnosti zbigayutsya zagalom voni ne ye ekvivalentnimi Napriklad rozmirnist snizhinki Koha maye topologichnu rozmirnist ale vona ne ye krivoyu v zhodnomu razi dovzhina krivoyi mizh dvoma tochkami snizhinki Koha ye neskinchennoyu Zhoden najmenshij shmatok ciyeyi krivoyi ne ye podibnim do liniyi ale ne ye vin chimos podibnim do shmatochku ploshini tosho Mozhna skazati sho cej shmatochok ye zanadto tovstim shob klasifikuvati jogo yak odnovimirnij ob yekt ale vin zanadto tonkij shob klasifikuvati jogo yak dvovimirnij ob yekt Tobto rozmirnist cogo ob yekta ye chislom mizh odiniceyu i dvijkoyu Specifichni viznachennyaRis 1 Viznachennya rozmirnosti z odinici ob yekta Isnuye dva pidhodi dlya generaciyi fraktalnoyi strukturi Odin z nih ce viroshuvannya z odinichnogo ob yekta ris 1 inshij skonstruyuvati podalshi rozmirnosti vihidnoyi strukturi napriklad trikutnik Serpinskogo ris 2 Tut mi sliduyemo drugomu pidhodu dlya viznachennya rozmirnosti fraktalnogo ob yekta div ris 1 Yaksho mi vizmemo ob yekt z linijnim rozmirom sho dorivnyuye 1 i pripustimo sho cej ob yekt znahoditsya v evklidovomu prostori D displaystyle D zmenshimo jogo linijnij rozmir na 1 l displaystyle 1 l v kozhnomu napryamku v prostori vin maye N l D displaystyle N l D samopodibnih ob yektiv dlya togo shob pokriti vihidnij ob yekt Ris 1 Rozmirnist viznachena yak D log N l log l displaystyle D frac log N l log l de logarifm mozhe mati bud yaku osnovu dosi dorivnyuye yiyi topologichnij abo Evklidovij rozmirnosti Vikoristovuyuchi ce rivnyannya dlya fraktalnoyi strukturi mi otrimayemo yiyi rozmirnist yaka ye bilsh mensh gausdorfovoyu rozmirnistyu sho ne bude cilim chislom yak i peredbachalos D lim ϵ 0 log N ϵ log 1 ϵ displaystyle D lim epsilon rightarrow 0 frac log N epsilon log frac 1 epsilon de N displaystyle N e ce chislo samopodibnih struktur linijnogo rozmiru e neobhidnih dlya pokrittya vsiyeyi strukturi Napriklad fraktalna rozmirnist trikutnika Serpinskogo Ris 2 viznachayetsya yak D lim ϵ 0 log N ϵ log 1 ϵ lim k log 3 k log 2 k log 3 log 2 1 585 displaystyle D lim epsilon rightarrow 0 frac log N epsilon log left frac 1 epsilon right lim k rightarrow infty frac log 3 k log 2 k frac log 3 log 2 approx 1 585 Ris 2 Trikutnik Serpinskogo otrimanij z dopomogoyu rekursivnogo podilu vihidnoyi strukturi Podibnim do cogo ye rozmirnist Minkovskogo sho rozglyadaye vipadok podilu prostoru na sitku kubikiv sho mayut rozmir e Provoditsya pidrahunok skilki takih kubikiv bude mistiti chastinu atraktor Znovu D 0 lim ϵ 0 log N ϵ log 1 ϵ displaystyle D 0 lim epsilon rightarrow 0 frac log N epsilon log frac 1 epsilon Inshi velichini rozmirnosti vklyuchayut informacijnu rozmirnist yaka rozglyadaye yaka serednya entropiya potribna dlya viznachennya zapovnenih kubikiv koli rozmir kubikiv zmenshuyetsya D 1 lim ϵ 0 log p ϵ log 1 ϵ displaystyle D 1 lim epsilon rightarrow 0 frac langle log p epsilon rangle log frac 1 epsilon i yaku napevne pidrahovuvati najlegshe D 2 lim ϵ 0 M log g ϵ M 2 log ϵ displaystyle D 2 lim epsilon rightarrow 0 M rightarrow infty frac log g epsilon M 2 log epsilon de M ce chislo tochok sho vikoristovuvalis dlya generaciyi fraktalu abo atraktoru i ge ce chislo par tochok sho znahodyat blizhche odna do odnoyi nizh is e Rozmirnosti ReniRozmirnist Minkovskogo informacijna ta korelyacijna rozmirnosti mozhut buti rozglyanuti yak chastkovi vipadki neperervnogo spektru zagalnoyi abo poryadku a sho viznachayetsya yak D a lim ϵ 0 1 1 a log i p i a log 1 ϵ displaystyle D alpha lim epsilon rightarrow 0 frac frac 1 1 alpha log sum i p i alpha log frac 1 epsilon de chiselnik ce granicya v poryadku a Rozmirnist Reni z a 0 rozglyadaye usi chastini pidtrimki atraktoru odnakovo odnak dlya bilshih znachen a vazhlivishe znachennya nadayetsya chastinam atraktora yaki vidviduyutsya najchastishe Atraktor dlya yakogo rozmirnosti Reni ne rivni nazivayetsya multifraktalom abo takim sho maye multifraktalnu strukturu Ce oznaka togo sho fraktal maye riznu rozmirnist v riznih jogo chastinah Viznachennya fraktalnoyi rozmirnosti z realnih danihSposobi vimiryuvannya fraktalnoyi rozmirnosti opisani vishe vivedeni dlya fraktaliv yaki viznacheni formalno Odnak zhivi organizmi i yavisha prirodi mayut fraktalni vlastivosti div Fraktali u prirodi tomu chasto korisno oharakterizivuvati fraktalnu rozmirnist naboru viborok danih Fraktalna rozmirnist ne mozhe buti vivedena tochno ale mozhe buti ocinena Ce vikoristovuyetsya v bagatoh sferah doslidzhen vklyuchayuchi fiziku analiz zobrazhen akustiku dzeta nuli Rimana elektrohimichni procesi Ocinki fraktalnoyi rozmirnosti duzhe chutilivi do shumu v eksperimentalnih danih osoblivo do obmezhen v kilkosti danih Potribno buti oberezhnim z visnovkami shodo viznachenoyi fraktalnoyi rozmirnosti dlya malorozmirnoyi dinamichnoyi povedinki za vinyatkom koli vikoristovuyetsya velika kilkist danih Div takozhMultifraktal LakunarnistPrimitki Arhiv originalu za 13 travnya 2008 Procitovano 17 lipnya 2010 Vicsek Tamas 2001 Fluctuations and scaling in biology Oxford Oxfordshire Oxford University Press ISBN 0 19 850790 9 B Dubuc J F Quiniou C Roques Carmes C Tricot and S W Zucker 1989 Evaluating the fractal dimension of profiles Phys Rev A 39 1500 12 doi 10 1103 PhysRevA 39 1500 P Soille and J F Rivest 1996 PDF Journal of Visual Communication and Image Representation 7 217 229 doi 10 1006 jvci 1996 0020 Arhiv originalu PDF za 20 lipnya 2011 Procitovano 17 lipnya 2010 Tolle C R McJunkin T R and Gorisch D J January 2003 Suboptimal Minimum Cluster Volume Cover Based Method for Measuring Fractal Dimension IEEE Trans Pattern Anal Mach Intell 25 1 32 41 doi 10 1109 TPAMI 2003 1159944 P Maragos and A Potamianos 1999 Fractal dimensions of speech sounds Computation and application to automatic speech recognition Journal of the Acoustical Society of America 105 3 1925 doi 10 1121 1 426738 PMID 10089613 O Shanker 2006 Random matrices generalized zeta functions and self similarity of zero distributions J Phys A Math Gen 39 13983 97 doi 10 1088 0305 4470 39 45 008 2004 Fractal Dimension of Electrochemical Reactions Journal of the Electrochemical Society 151 9 E291 6 doi 10 1149 1 1773583 PosilannyaMandelbrot Benoit B The Mis Behavior of Markets A Fractal View of Risk Ruin and Reward Basic Books 2004 LankiTruSoft s Benoit Fractal Analysis Software product calculates fractal dimensions and hurst exponents 8 bereznya 2022 u Wayback Machine Fractal Dimension Estimator Java Applet 26 sichnya 2011 u Wayback Machine What fractal dimension is and how this is the core concept defining what fractals themselves are 16 grudnya 2017 u Wayback Machine