В теорії графів породженим шляхом в неорієнтованому графі G називається шлях, що є породженим підграфом G. Таким чином, це послідовність вершин в G, така, що будь-які дві суміжні вершини в послідовності з'єднані ребром в G і будь-які дві несуміжні вершини послідовності не з'єднані ребром G. Породжений шлях іноді називають змією і завдання пошуку найдовшого породженого шляху в графах гіперкубів відоме як задача про змію в коробці. Таким же чином, породженим циклом називається цикл, що є породженим підграфом G. Породжені цикли називаються також циклами без хорд або (якщо довжина циклу не менше чотирьох) дірками. Антидіра — це діра в доповненні графу G, тобто антидіра — це доповнення діри.
Довжину найбільшого породженого шляху в графі іноді називають числом обходу графу. Для розріджених графів існування обмеженого числа обходу еквівалентно існуванню обмеженої глибини дерева.Породженим числом обходу графу G називається найменше число підмножин вершин, на які можна розкласти вершини графу, щоб кожна підмножина утворювала породжений шлях, і це поняття тісно пов'язане з числом покриття шляхами — мінімальне число незв'язних шляхів, що є породженими підграфами G, які покривають всі вершини G. Обхват графу — це довжина його найкоротшого циклу, але цей цикл повинен бути породженим циклом, оскільки будь-яка хорда могла б утворити більш короткий цикл. З тих же причин непарним обхватом графу називається довжина його найкоротшого непарного породженого циклу.
Приклад
На малюнку показаний куб, граф із вісьмома вершинами, дванадцятьма ребрами і породженим шляхом довжини чотири. Прямий аналіз показує, що не існує більш довгого породженого шляху в кубі, хоча існує породжений цикл довжини шість. Завдання пошуку найбільшого породженого шляху або циклу в гіперкубі, вперше поставлене Каутц (Kautz, 1958), відоме як задача про змію в коробці та інтенсивно вивчалось через його використання в теорії кодування і конструюванні.
Опис сімейств графів
Багато важливих сімейства графів можна описати в термінах породжених шляхів або циклів графів в сімействі.
- Очевидно, що зв'язні графи, що не мають породжених шляхів довжини два — це повні графи, а зв'язні графи без породжених циклів — це дерева.
- Граф без трикутників — це граф без породжених циклів довжини три.
- Кографи — це в точності графи без породжених шляхів довжини три.
- Хордальні графи — це графи без породжених циклів довжини чотири й більше.
- Графи без дірок парної довжини — це графи, що не мають циклів, що містять парне число вершин.
- Тривіально досконалі графи — це графи, в яких немає ні породжених шляхів довжини три, ні породжених циклів довжини чотири.
- За строгою теоремою про досконалі графи, досконалі графи — це графи без непарних дірок і непарних антидір.
- Дистанційно-успадковувані графи — це графи, в яких будь-який породжений шлях є найкоротшим, і в цих графах будь-які два породжених шляхи між двома вершинами мають однакову довжину.
- Блокові графи — це графи, в яких існує максимум один породжений шлях між будь-якими двома вершинами, а зв'язні блокові графи — це графи, в яких існує в точності один породжений шлях між будь-якими двома вершинами.
Алгоритми і складність
Завдання визначення, чи має граф G породжений шлях довжини не меншої k, є NP-повним. Гарей і Джонсон (Garey, Johnson, 1979) висловили цей результат в неопублікованому повідомленні Міхалісу Янакакісу. Однак це завдання можна вирішити за поліноміальний час для певних сімейств графів, таких як графи без астеро]дальних трійок або графи без довгих дірок.
Також є NP-повною задачею визначення, чи можна розкласти вершини графу на два породжених шляхи або два породжених цикли. Як наслідок, визначення числа породжених шляхів графу є NP-складною задачею.
Складність задач апроксимації найбільшого породженого шляху або циклу можна пов'язати із завданням пошуку найбільших незалежних множин в графах.
Дірки (і антидіри в графах без циклів довжини 5 без хорд) у графі з n вершинами та m ребрами можуть бути знайдені за час (n + m2).
Атомарні цикли
Атомарні цикли — це узагальнення циклів без хорд. Якщо заданий цикл, n — хорда визначається як шлях довжини n, що містить дві точки циклу, де n менше довжини найкоротшого шляху в циклі, що з'єднує ці точки. Якщо цикл не має n — хорд, він називається атомарним циклом, оскільки його не можна розбити на менші цикли. У найгіршому випадку атомарні цикли в графі можуть бути перераховані за час O (m2), де m — число ребер у графі.
Див. також
Примітки
Посилання
- Francesco Barioli, Shaun Fallat, Leslie Hogben. Computation of minimal rank and path cover number for certain graphs // Linear Algebra Appl.. — 2004. — Т. 392. — С. 289–303. — DOI:10.1016/j.laa.2004.06.019.
- Piotr Berman, Georg Schnitger. On the complexity of approximating the independent set problem // Information and Computation. — 1992. — Т. 96. — No. 1. — С. 77–94. — DOI:10.1016/0890-5401(92)90056-L.
- Fred Buckley, Frank Harary. On longest induced paths in graphs // Chinese Quart. J. Math.. — 1988. — Т. 3. — No. 3. — С. 61–65.
- Gary Chartrand, Joseph McCanna, Naveed Sherwani, Moazzem Hossain, Jahangir Hashmi. The induced path number of bipartite graphs // Ars Combin.. — 1994. — Т. 37. — С. 191–208.
- Michael R. Garey, David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. — W. H. Freeman, 1979. — С. 196.
- Michael Gashler, Tony Martinez. Robust manifold learning with CycleCut // Connection Science. — 2012. — Т. 24, вип. 1. — С. 57–69. — DOI:10.1080/09540091.2012.664122.
- Fănică Gavril. Algorithms for maximum weight induced paths // Information Processing Letters. — 2002. — Т. 81, вип. 4. — С. 203–208. — DOI:10.1016/S0020-0190(01)00222-8.
- Johan Håstad. Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science. — 1996. — С. 627–636. — DOI:10.1109/SFCS.1996.548522.
- W. H. Kautz. Unit-distance error-checking codes // IRE Trans. Elect. Comput.. — 1958. — Т. 7. — С. 177–180.
- Dieter Kratsch, Haiko Müller, Ioan Todinca. Graph-theoretic concepts in computer science. — Berlin : Lecture Notes in Computer Science, Vol. 2880, Springer-Verlag, 2003. — С. 309–321. — DOI:10.1007/b93953.
- Hoàng-Oanh Le, Van Bang Le, Haiko Müller. Splitting a graph into disjoint induced paths or cycles // Discrete Appl. Math.. — 2003. — Т. 131, вип. 1. — С. 199–212. — DOI:10.1016/S0166-218X(02)00425-0.
- Jaroslav Nešetřil, Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and Algorithms. — Heidelberg : Springer, 2012. — Т. 28. — С. 115–144. — (Algorithms and Combinatorics). — . — DOI:10.1007/978-3-642-27875-4.
- Stavros D. Nikolopoulos, Leonidas Palios. Proc. 15th ACM-SIAM Symposium on Discrete Algorithms. — 2004. — С. 850–859..
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
V teoriyi grafiv porodzhenim shlyahom v neoriyentovanomu grafi G nazivayetsya shlyah sho ye porodzhenim pidgrafom G Takim chinom ce poslidovnist vershin v G taka sho bud yaki dvi sumizhni vershini v poslidovnosti z yednani rebrom v G i bud yaki dvi nesumizhni vershini poslidovnosti ne z yednani rebrom G Porodzhenij shlyah inodi nazivayut zmiyeyu i zavdannya poshuku najdovshogo porodzhenogo shlyahu v grafah giperkubiv vidome yak zadacha pro zmiyu v korobci Takim zhe chinom porodzhenim ciklom nazivayetsya cikl sho ye porodzhenim pidgrafom G Porodzheni cikli nazivayutsya takozh ciklami bez hord abo yaksho dovzhina ciklu ne menshe chotiroh dirkami Antidira ce dira v dopovnenni grafu G tobto antidira ce dopovnennya diri Porodzhenij shlyah dovzhini chotiri v kubi Zavdannya poshuku najbilshogo porodzhenogo shlyahu v giperkubi vidome yak zadacha pro zmiyu v korobci Dovzhinu najbilshogo porodzhenogo shlyahu v grafi inodi nazivayut chislom obhodu grafu Dlya rozridzhenih grafiv isnuvannya obmezhenogo chisla obhodu ekvivalentno isnuvannyu obmezhenoyi glibini dereva Porodzhenim chislom obhodu grafu G nazivayetsya najmenshe chislo pidmnozhin vershin na yaki mozhna rozklasti vershini grafu shob kozhna pidmnozhina utvoryuvala porodzhenij shlyah i ce ponyattya tisno pov yazane z chislom pokrittya shlyahami minimalne chislo nezv yaznih shlyahiv sho ye porodzhenimi pidgrafami G yaki pokrivayut vsi vershini G Obhvat grafu ce dovzhina jogo najkorotshogo ciklu ale cej cikl povinen buti porodzhenim ciklom oskilki bud yaka horda mogla b utvoriti bilsh korotkij cikl Z tih zhe prichin neparnim obhvatom grafu nazivayetsya dovzhina jogo najkorotshogo neparnogo porodzhenogo ciklu PrikladNa malyunku pokazanij kub graf iz vismoma vershinami dvanadcyatma rebrami i porodzhenim shlyahom dovzhini chotiri Pryamij analiz pokazuye sho ne isnuye bilsh dovgogo porodzhenogo shlyahu v kubi hocha isnuye porodzhenij cikl dovzhini shist Zavdannya poshuku najbilshogo porodzhenogo shlyahu abo ciklu v giperkubi vpershe postavlene Kautc Kautz 1958 vidome yak zadacha pro zmiyu v korobci ta intensivno vivchalos cherez jogo vikoristannya v teoriyi koduvannya i konstruyuvanni Opis simejstv grafivBagato vazhlivih simejstva grafiv mozhna opisati v terminah porodzhenih shlyahiv abo cikliv grafiv v simejstvi Ochevidno sho zv yazni grafi sho ne mayut porodzhenih shlyahiv dovzhini dva ce povni grafi a zv yazni grafi bez porodzhenih cikliv ce dereva Graf bez trikutnikiv ce graf bez porodzhenih cikliv dovzhini tri Kografi ce v tochnosti grafi bez porodzhenih shlyahiv dovzhini tri Hordalni grafi ce grafi bez porodzhenih cikliv dovzhini chotiri j bilshe Grafi bez dirok parnoyi dovzhini ce grafi sho ne mayut cikliv sho mistyat parne chislo vershin Trivialno doskonali grafi ce grafi v yakih nemaye ni porodzhenih shlyahiv dovzhini tri ni porodzhenih cikliv dovzhini chotiri Za strogoyu teoremoyu pro doskonali grafi doskonali grafi ce grafi bez neparnih dirok i neparnih antidir Distancijno uspadkovuvani grafi ce grafi v yakih bud yakij porodzhenij shlyah ye najkorotshim i v cih grafah bud yaki dva porodzhenih shlyahi mizh dvoma vershinami mayut odnakovu dovzhinu Blokovi grafi ce grafi v yakih isnuye maksimum odin porodzhenij shlyah mizh bud yakimi dvoma vershinami a zv yazni blokovi grafi ce grafi v yakih isnuye v tochnosti odin porodzhenij shlyah mizh bud yakimi dvoma vershinami Algoritmi i skladnistZavdannya viznachennya chi maye graf G porodzhenij shlyah dovzhini ne menshoyi k ye NP povnim Garej i Dzhonson Garey Johnson 1979 vislovili cej rezultat v neopublikovanomu povidomlenni Mihalisu Yanakakisu Odnak ce zavdannya mozhna virishiti za polinomialnij chas dlya pevnih simejstv grafiv takih yak grafi bez astero dalnih trijok abo grafi bez dovgih dirok Takozh ye NP povnoyu zadacheyu viznachennya chi mozhna rozklasti vershini grafu na dva porodzhenih shlyahi abo dva porodzhenih cikli Yak naslidok viznachennya chisla porodzhenih shlyahiv grafu ye NP skladnoyu zadacheyu Skladnist zadach aproksimaciyi najbilshogo porodzhenogo shlyahu abo ciklu mozhna pov yazati iz zavdannyam poshuku najbilshih nezalezhnih mnozhin v grafah Dirki i antidiri v grafah bez cikliv dovzhini 5 bez hord u grafi z n vershinami ta m rebrami mozhut buti znajdeni za chas n m2 Atomarni cikliAtomarni cikli ce uzagalnennya cikliv bez hord Yaksho zadanij cikl n horda viznachayetsya yak shlyah dovzhini n sho mistit dvi tochki ciklu de n menshe dovzhini najkorotshogo shlyahu v cikli sho z yednuye ci tochki Yaksho cikl ne maye n hord vin nazivayetsya atomarnim ciklom oskilki jogo ne mozhna rozbiti na menshi cikli U najgirshomu vipadku atomarni cikli v grafi mozhut buti pererahovani za chas O m2 de m chislo reber u grafi Div takozhGraf parnosti Zadacha pro najdovshij shlyahPrimitkiBuckley Harary 1988 Nesetril Ossona de Mendez 2012 Chartrand McCanna Sherwani Hossain 1994 Barioli Fallat Hogben 2004 Kratsch Muller Todinca 2003 Gavril 2002 Le Le Muller 2003 Berman Schnitger 1992 Nikolopoulos Palios 2004 Gashler Martinez 2012 PosilannyaFrancesco Barioli Shaun Fallat Leslie Hogben Computation of minimal rank and path cover number for certain graphs Linear Algebra Appl 2004 T 392 S 289 303 DOI 10 1016 j laa 2004 06 019 Piotr Berman Georg Schnitger On the complexity of approximating the independent set problem Information and Computation 1992 T 96 No 1 S 77 94 DOI 10 1016 0890 5401 92 90056 L Fred Buckley Frank Harary On longest induced paths in graphs Chinese Quart J Math 1988 T 3 No 3 S 61 65 Gary Chartrand Joseph McCanna Naveed Sherwani Moazzem Hossain Jahangir Hashmi The induced path number of bipartite graphs Ars Combin 1994 T 37 S 191 208 Michael R Garey David S Johnson Computers and Intractability A Guide to the Theory of NP Completeness W H Freeman 1979 S 196 Michael Gashler Tony Martinez Robust manifold learning with CycleCut Connection Science 2012 T 24 vip 1 S 57 69 DOI 10 1080 09540091 2012 664122 Fănică Gavril Algorithms for maximum weight induced paths Information Processing Letters 2002 T 81 vip 4 S 203 208 DOI 10 1016 S0020 0190 01 00222 8 Johan Hastad Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science 1996 S 627 636 DOI 10 1109 SFCS 1996 548522 W H Kautz Unit distance error checking codes IRE Trans Elect Comput 1958 T 7 S 177 180 Dieter Kratsch Haiko Muller Ioan Todinca Graph theoretic concepts in computer science Berlin Lecture Notes in Computer Science Vol 2880 Springer Verlag 2003 S 309 321 DOI 10 1007 b93953 Hoang Oanh Le Van Bang Le Haiko Muller Splitting a graph into disjoint induced paths or cycles Discrete Appl Math 2003 T 131 vip 1 S 199 212 DOI 10 1016 S0166 218X 02 00425 0 Jaroslav Nesetril Patrice Ossona de Mendez Sparsity Graphs Structures and Algorithms Heidelberg Springer 2012 T 28 S 115 144 Algorithms and Combinatorics ISBN 978 3 642 27874 7 DOI 10 1007 978 3 642 27875 4 Stavros D Nikolopoulos Leonidas Palios Proc 15th ACM SIAM Symposium on Discrete Algorithms 2004 S 850 859