Евклі́дове мініма́льне кістяко́ве де́рево (ЕМКД; англ. Euclidean minimum spanning tree, EMST) — це мінімальне кістякове дерево набору з n точок на площині (або загальніше, ), де вага ребра між будь-якою парою точок є евклідовою відстанню між двома точками. Простими термінами ЕМКД пов'язує набір точок за допомогою відрізків так, що загальна довжина всіх відрізків мінімальна і будь-яку точку можна досягти з іншої точки за цими відрізками.
На площині ЕМКД для даного набору точок можна знайти за час з використанням простору при обчисленні моделі алгебричного дерева розв'язків. У сильніших моделях обчислення, які точніше моделюють можливості реальних комп'ютерів, відомі швидші ймовірнісні алгоритми зі складністю .
У вищих розмірностях () пошук оптимального алгоритму залишається відкритою проблемою.
Нижня межа
Асимптотичну нижню межу для часової складності задачі ЕМКД можна встановити в обмежених моделях обчислення, таких як алгебричне дерево розв'язків і моделі алгебричного дерева розв'язків, у яких алгоритм має доступ до вхідних точок тільки через певні обмежені примітиви, які здійснюють прості алгебричні обчислення над координатами. У цих моделях задача про пару найближчих точок потребує часу , але найближча пара обов'язково буде ребром ЕМКД, так що ЕМКД також вимагає такого часу. Однак, якщо вхідні точки мають цілі координати і доступні бітові операції та індексація таблиці над координатами, то можливі швидші алгоритми.
Алгоритми обчислення ЕМКД на площині
Найпростіший алгоритм пошуку ЕМКД у двовимірному просторі, якщо дано n точок, полягає в побудові повного графа з n вершинами, який має n(n -1)/2 ребер, обчислення ваги кожного ребра, тобто, відстаней між кожною парою точок, а потім виконання стандартного алгоритму пошуку мінімального кістякового дерева (такого як версія алгоритму Прима або алгоритму Крускала) на цьому графі. Оскільки цей граф має Θ(n2) ребер для n різних точок, побудова графа вимагає часу Ω(n2). Розв'язання задачі вимагає також простору розміру для зберігання всіх ребер.
Для досконалішого підходу до пошуку ЕМКД на площині зауважимо, що воно є підграфом будь-якої тріангуляції Делоне n точок, що істотно скорочує кількість ребер:
- Будуємо тріангуляцію Делоне за час O(n log n) з використанням пам'яті O(n). Оскільки тріангуляція Делоне є планарним графом і число ребер у будь-якому планарному графі не більше ніж утричі перевищує число вершин, ця побудова утворює лише O(n) ребер.
- Помічаємо кожне ребро його довжиною.
- Запускаємо алгоритм пошуку мінімального кістякового дерева на цьому графі. Оскільки є O(n) ребер, цей алгоритм зажадає часу O(n log n), якщо використовувати будь-які стандартні алгоритми мінімального кістякового дерева, такі як алгоритм Борувки, алгоритм Прима або алгоритм Крускала.
Врешті-решт, алгоритм вимагає O(n log n) часу та обсяг O(n).
Якщо вхідні координати є цілими числами і можуть використовуватися як масив індексів, можливі швидші алгоритми — тріангуляцію Делоне можна побудувати за допомогою ймовірнісного алгоритму за час із математичним очікуванням . Крім того, оскільки тріангуляція Делоне є планарним графом, її мінімальне кістякове дерево можна знайти за лінійний час за допомогою варіанта алгоритму Борувки, який видаляє всі, крім найдешевших, ребра між кожною парою компонент після кожного етапу алгоритму. Отже, повний очікуваний час роботи цього алгоритму дорівнює .
Вищі розмірності
Задачу можна узагальнити на n точок d-вимірного простору ℝd. У вищих розмірностях зв'язність, визначена тріангуляцією Делоне (яка розбиває опуклу оболонку на d-вимірні симплекси) містить мінімальне кістякове дерево. Проте тріангуляція може містити повний граф. Тому пошук евклідового мінімального кістякового дерева як кістякового дерева повного графа або як кістякового дерева тріангуляцій Делоне вимагатимуть часу . У тривимірному просторі можна знайти мінімальне кістякове дерево за час , а в будь-якому просторі більшої розмірності можна розв'язати задачу швидше, ніж межа з квадратичним часом для повного графа та алгоритмів тріангуляції Делоне. Для рівномірно розподілених випадкових точок можна обчислити мінімальні кістяки з тією ж швидкістю, що й сортування. Використовуючи [en] можна отримати -апроксимацію за час .
Піддерева тріангуляції Делоне
Всі ребра ЕМКД є ребрами графа відносних околів, які, у свою чергу, є ребрами графа Габріеля, які є ребрами в тріангуляції Делоне точок, що можна довести через контрапозитивний еквівалент твердження: будь-яке ребро, що не входить до тріангуляції Делоне, не міститься в жодному ЕМКД. Доведення ґрунтується на двох властивостях мінімальних кістяків і тріангуляції Делоне:
- (властивість циклів мінімальних кістякових дерев): Для будь-якого циклу C у графі, якщо вага ребра e графа C більша від ваги іншого ребра C, це ребро не може належати мінімальному кістяковому дереву.
- (властивість тріангуляцій Делоне): Якщо є цикл із двома вхідними точками на його межі, який не містить інших вхідних точок, відрізок між цими двома точками є ребром будь-якої тріангуляції Делоне.
Розглянемо ребро e між двома вхідними точками p і q, яке є ребром тріангуляції Делоне. Зі властивості 2 випливає, що цикл C з e як діаметром має містити всередині деяку іншу точку r. Але тоді r розташована ближче як до p, так і до q, ніж вони одна відносно одної, а тому ребро з p в q є найдовшим у циклі точок і, за властивістю 1, e не належить жодному ЕМКД.
Очікуваний розмір
Очікуваний розмір ЕМКД для великих наборів точок визначив Дж. Міхаель Стіл. Якщо є густиною функції ймовірності для вибору точок, то для великих і розмір ЕМКД приблизно дорівнює
де — стала, яка залежить тільки від розмірності . Точне значення сталої невідоме, але можна оцінити її емпірично.
Застосування
Очевидне застосування евклідових мінімальних кістякових дерев — пошук найдешевшої мережі проводів або труб для з'єднання набору місць за припущення, що ціна залежить тільки від довжини одиниці з'єднувального продукту. Однак, оскільки це дає абсолютну нижню межу на кількість необхідного продукту, більшість таких мереж надають перевагу k-реберно-зв'язному графу замість дерева, так що втрата будь-якого окремого зв'язку не розбиває мережу на частини.
Іншим застосуванням ЕМКД є апроксимувальний алгоритм зі сталим множником для наближеного розв'язання евклідової задачі комівояжера, версії задачі комівояжера на множині точок площини з ребрами, ціни яких дорівнюють їх довжині. Цей реалістичний варіант задачі можна розв'язати апроксимаційно зі множником 2, обчисливши ЕМКД, пройшовши вздовж його межі, яка окреслює все дерево, а потім видаливши всі вершини, що зустрілися кратно (залишивши тільки одну).
Планарна реалізація
Задача реалізації для евклідових мінімальних кістякових дерев ставиться так: якщо дано дерево , знайти положення D(u) кожної вершини , так що T є мінімальним кістяковим деревом або визначити, що таких положень не існує. Перевірка існування реалізації на площині є NP-повною задачею.
Див. також
Примітки
- Buchin, Mulzer, 2009, с. 139–148.
- Yao, 1989, с. 308–313.
- Eppstein, 1999, с. 425–461.
- Mareš, 2004, с. 315–320.
- Agarwal, Edelsbrunner, Schwarzkopf, Welzl, 1991, с. 407–422.
- Chatterjee, Connor, Kumar, 2010, с. 486–500.
- Smid, 2005.
- Jaromczyk, Toussaint, 1992, с. 1502–1517.
- Toussaint, 1981, с. 860–861.
- Toussaint, 1980, с. 261–268.
- Pless, 2003.
- Sedgewick, Wayne, 2007.
- Steele, 1988, с. 1767–1787.
- Eades, Whitesides, 1994, с. 49–56.
Література
- Kevin Buchin, Wolfgang Mulzer. Delaunay triangulations in O(sort(n)) time and more // [1] — 2009. — DOI: з джерела 21 січня 2022
- Yao A. C.-C. Lower bounds for algebraic computation trees with integer inputs // . — 1989. — DOI:
- David Eppstein. Spanning trees and spanners // Handbook of Computational Geometry. — Elsevier, 1999.
- Martin Mareš. Two linear time algorithms for MST on minor closed graph classes // Archivum mathematicum. — 2004. — Т. 40, вип. 3. з джерела 9 травня 2009. Процитовано 13 червня 2022.
- Pankaj K. Agarwal, Herbert Edelsbrunner, Schwarzkopf O., Emo Welzl. Euclidean minimum spanning trees and bichromatic closest pairs // Discrete and Computational Geometry. — Springer, 1991. — Т. 6, вип. 1. — DOI: .
- Chatterjee S., Connor M., Kumar P. Geometric minimum spanning trees with GeoFilterKruskal // Symposium on Experimental Algorithms / Paola Festa. — Springer-Verlag, 2010. — Т. 6049. — (Lecture Notes in Computer Science) — DOI:
- Michiel Smid. The well-separated pair decomposition and its applications. — 2005. — August. з джерела 18 лютого 2022. Процитовано 2014-03-26.
- Jerzy W. Jaromczyk, Godfried T. Toussaint. Relative neighborhood graphs and their relatives // Proceedings of the IEEE. — 1992. — Т. 80.
- Godfried T. Toussaint. Comment on algorithms for computing relative neighborhood graph // Electronics Letters. — 1981. — Т. 16, № 22 (October).
- Godfried T. Toussaint. The relative neighborhood graph of a finite planar set // Pattern Recognition. — 1980. — Т. 12.
- Robert Pless; Associate Professor of Computer Science and Engineering. Lecture 17: Voronoi Diagrams and Delauney Triangulations // [2] — Washington University, 2003. з джерела 2 січня 2018
- Robert Sedgewick, Kevin Wayne. Minimum Spanning Tree lecture notes. Computer Science 226: Algorithms & Data Structures. — Princeton University, 2007. з джерела 22 травня 2022. Процитовано 13 червня 2022.
- J. Michael Steele. Growth rates of Euclidean minimum spanning trees with power weighted edges // The Annals of Probability. — 1988. — Т. 16, вип. 4. — DOI: . з джерела 6 травня 2021. Процитовано 13 червня 2022.
- Peter Eades, Sue Whitesides. The realization problem for Евклидово минимальное остовное дерево s is NP-hard // Proc. 10th ACM Symposium on Computational Geometry. — 1994. — DOI:
- Smith College: The Open Problems Project: Problem 5: Euclidean Minimum Spanning Tree [ 10 грудня 2016 у Wayback Machine.]
- Max-Planck-Institut fuer Informatik: Exercise solutions, by Kavitha Telikepalli (Postscript)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Evkli dove minima lne kistyako ve de revo EMKD angl Euclidean minimum spanning tree EMST ce minimalne kistyakove derevo naboru z n tochok na ploshini abo zagalnishe R d displaystyle mathbb R d de vaga rebra mizh bud yakoyu paroyu tochok ye evklidovoyu vidstannyu mizh dvoma tochkami Prostimi terminami EMKD pov yazuye nabir tochok za dopomogoyu vidrizkiv tak sho zagalna dovzhina vsih vidrizkiv minimalna i bud yaku tochku mozhna dosyagti z inshoyi tochki za cimi vidrizkami EMKD 25 vipadkovih tochok na ploshini Na ploshini EMKD dlya danogo naboru tochok mozhna znajti za chas 8 n log n displaystyle Theta n log n z vikoristannyam prostoru O n displaystyle O n pri obchislenni modeli algebrichnogo dereva rozv yazkiv U silnishih modelyah obchislennya yaki tochnishe modelyuyut mozhlivosti realnih komp yuteriv vidomi shvidshi jmovirnisni algoritmi zi skladnistyu O n log log n displaystyle O n log log n U vishih rozmirnostyah d 3 displaystyle d geqslant 3 poshuk optimalnogo algoritmu zalishayetsya vidkritoyu problemoyu Nizhnya mezhaAsimptotichnu nizhnyu mezhu W n log n displaystyle Omega n log n dlya chasovoyi skladnosti zadachi EMKD mozhna vstanoviti v obmezhenih modelyah obchislennya takih yak algebrichne derevo rozv yazkiv i modeli algebrichnogo dereva rozv yazkiv u yakih algoritm maye dostup do vhidnih tochok tilki cherez pevni obmezheni primitivi yaki zdijsnyuyut prosti algebrichni obchislennya nad koordinatami U cih modelyah zadacha pro paru najblizhchih tochok potrebuye chasu W n log n displaystyle Omega n log n ale najblizhcha para obov yazkovo bude rebrom EMKD tak sho EMKD takozh vimagaye takogo chasu Odnak yaksho vhidni tochki mayut cili koordinati i dostupni bitovi operaciyi ta indeksaciya tablici nad koordinatami to mozhlivi shvidshi algoritmi Algoritmi obchislennya EMKD na ploshiniNajprostishij algoritm poshuku EMKD u dvovimirnomu prostori yaksho dano n tochok polyagaye v pobudovi povnogo grafa z n vershinami yakij maye n n 1 2 reber obchislennya vagi kozhnogo rebra tobto vidstanej mizh kozhnoyu paroyu tochok a potim vikonannya standartnogo algoritmu poshuku minimalnogo kistyakovogo dereva takogo yak versiya algoritmu Prima abo algoritmu Kruskala na comu grafi Oskilki cej graf maye 8 n2 reber dlya n riznih tochok pobudova grafa vimagaye chasu W n2 Rozv yazannya zadachi vimagaye takozh prostoru rozmiru W n 2 displaystyle Omega n 2 dlya zberigannya vsih reber Dlya doskonalishogo pidhodu do poshuku EMKD na ploshini zauvazhimo sho vono ye pidgrafom bud yakoyi triangulyaciyi Delone n tochok sho istotno skorochuye kilkist reber Buduyemo triangulyaciyu Delone za chas O n log n z vikoristannyam pam yati O n Oskilki triangulyaciya Delone ye planarnim grafom i chislo reber u bud yakomu planarnomu grafi ne bilshe nizh utrichi perevishuye chislo vershin cya pobudova utvoryuye lishe O n reber Pomichayemo kozhne rebro jogo dovzhinoyu Zapuskayemo algoritm poshuku minimalnogo kistyakovogo dereva na comu grafi Oskilki ye O n reber cej algoritm zazhadaye chasu O n log n yaksho vikoristovuvati bud yaki standartni algoritmi minimalnogo kistyakovogo dereva taki yak algoritm Boruvki algoritm Prima abo algoritm Kruskala Vreshti resht algoritm vimagaye O n log n chasu ta obsyag O n Yaksho vhidni koordinati ye cilimi chislami i mozhut vikoristovuvatisya yak masiv indeksiv mozhlivi shvidshi algoritmi triangulyaciyu Delone mozhna pobuduvati za dopomogoyu jmovirnisnogo algoritmu za chas iz matematichnim ochikuvannyam O n log log n displaystyle O n log log n Krim togo oskilki triangulyaciya Delone ye planarnim grafom yiyi minimalne kistyakove derevo mozhna znajti za linijnij chas za dopomogoyu varianta algoritmu Boruvki yakij vidalyaye vsi krim najdeshevshih rebra mizh kozhnoyu paroyu komponent pislya kozhnogo etapu algoritmu Otzhe povnij ochikuvanij chas roboti cogo algoritmu dorivnyuye O n log log n displaystyle O n log log n Vishi rozmirnostiZadachu mozhna uzagalniti na n tochok d vimirnogo prostoru ℝd U vishih rozmirnostyah zv yaznist viznachena triangulyaciyeyu Delone yaka rozbivaye opuklu obolonku na d vimirni simpleksi mistit minimalne kistyakove derevo Prote triangulyaciya mozhe mistiti povnij graf Tomu poshuk evklidovogo minimalnogo kistyakovogo dereva yak kistyakovogo dereva povnogo grafa abo yak kistyakovogo dereva triangulyacij Delone vimagatimut chasu O d n 2 displaystyle O dn 2 U trivimirnomu prostori mozhna znajti minimalne kistyakove derevo za chas O n log n 4 3 displaystyle O n log n tfrac 4 3 a v bud yakomu prostori bilshoyi rozmirnosti mozhna rozv yazati zadachu shvidshe nizh mezha z kvadratichnim chasom dlya povnogo grafa ta algoritmiv triangulyaciyi Delone Dlya rivnomirno rozpodilenih vipadkovih tochok mozhna obchisliti minimalni kistyaki z tiyeyu zh shvidkistyu sho j sortuvannya Vikoristovuyuchi en mozhna otrimati 1 ϵ displaystyle 1 epsilon aproksimaciyu za chas O n log n displaystyle O n log n Piddereva triangulyaciyi DeloneVsi rebra EMKD ye rebrami grafa vidnosnih okoliv yaki u svoyu chergu ye rebrami grafa Gabrielya yaki ye rebrami v triangulyaciyi Delone tochok sho mozhna dovesti cherez kontrapozitivnij ekvivalent tverdzhennya bud yake rebro sho ne vhodit do triangulyaciyi Delone ne mistitsya v zhodnomu EMKD Dovedennya gruntuyetsya na dvoh vlastivostyah minimalnih kistyakiv i triangulyaciyi Delone vlastivist cikliv minimalnih kistyakovih derev Dlya bud yakogo ciklu C u grafi yaksho vaga rebra e grafa C bilsha vid vagi inshogo rebra C ce rebro ne mozhe nalezhati minimalnomu kistyakovomu derevu vlastivist triangulyacij Delone Yaksho ye cikl iz dvoma vhidnimi tochkami na jogo mezhi yakij ne mistit inshih vhidnih tochok vidrizok mizh cimi dvoma tochkami ye rebrom bud yakoyi triangulyaciyi Delone Rozglyanemo rebro e mizh dvoma vhidnimi tochkami p i q yake ye rebrom triangulyaciyi Delone Zi vlastivosti 2 viplivaye sho cikl C z e yak diametrom maye mistiti vseredini deyaku inshu tochku r Ale todi r roztashovana blizhche yak do p tak i do q nizh voni odna vidnosno odnoyi a tomu rebro z p v q ye najdovshim u cikli tochok p q r p displaystyle p to q to r to p i za vlastivistyu 1 e ne nalezhit zhodnomu EMKD Ochikuvanij rozmirOchikuvanij rozmir EMKD dlya velikih naboriv tochok viznachiv Dzh Mihael Stil Yaksho f displaystyle f ye gustinoyu funkciyi jmovirnosti dlya viboru tochok to dlya velikih n displaystyle n i d 1 displaystyle d neq 1 rozmir EMKD priblizno dorivnyuye c d n d 1 d R d f x d 1 d d x displaystyle c d n frac d 1 d int mathbb R d f x frac d 1 d dx de c d displaystyle c d stala yaka zalezhit tilki vid rozmirnosti d displaystyle d Tochne znachennya staloyi nevidome ale mozhna ociniti yiyi empirichno ZastosuvannyaOchevidne zastosuvannya evklidovih minimalnih kistyakovih derev poshuk najdeshevshoyi merezhi provodiv abo trub dlya z yednannya naboru misc za pripushennya sho cina zalezhit tilki vid dovzhini odinici z yednuvalnogo produktu Odnak oskilki ce daye absolyutnu nizhnyu mezhu na kilkist neobhidnogo produktu bilshist takih merezh nadayut perevagu k reberno zv yaznomu grafu zamist dereva tak sho vtrata bud yakogo okremogo zv yazku ne rozbivaye merezhu na chastini Inshim zastosuvannyam EMKD ye aproksimuvalnij algoritm zi stalim mnozhnikom dlya nablizhenogo rozv yazannya evklidovoyi zadachi komivoyazhera versiyi zadachi komivoyazhera na mnozhini tochok ploshini z rebrami cini yakih dorivnyuyut yih dovzhini Cej realistichnij variant zadachi mozhna rozv yazati aproksimacijno zi mnozhnikom 2 obchislivshi EMKD projshovshi vzdovzh jogo mezhi yaka okreslyuye vse derevo a potim vidalivshi vsi vershini sho zustrilisya kratno zalishivshi tilki odnu Planarna realizaciyaZadacha realizaciyi dlya evklidovih minimalnih kistyakovih derev stavitsya tak yaksho dano derevo T V E displaystyle T V E znajti polozhennya D u kozhnoyi vershini u V displaystyle u in V tak sho T ye minimalnim kistyakovim derevom D u u V displaystyle D u colon u in V abo viznachiti sho takih polozhen ne isnuye Perevirka isnuvannya realizaciyi na ploshini ye NP povnoyu zadacheyu Div takozhGraf Urkgarta Derevnij kistyakPrimitkiBuchin Mulzer 2009 s 139 148 Yao 1989 s 308 313 Eppstein 1999 s 425 461 Mares 2004 s 315 320 Agarwal Edelsbrunner Schwarzkopf Welzl 1991 s 407 422 Chatterjee Connor Kumar 2010 s 486 500 Smid 2005 Jaromczyk Toussaint 1992 s 1502 1517 Toussaint 1981 s 860 861 Toussaint 1980 s 261 268 Pless 2003 Sedgewick Wayne 2007 Steele 1988 s 1767 1787 Eades Whitesides 1994 s 49 56 LiteraturaKevin Buchin Wolfgang Mulzer Delaunay triangulations in O sort n time and more 1 2009 DOI 10 1109 FOCS 2009 53 z dzherela 21 sichnya 2022 Yao A C C Lower bounds for algebraic computation trees with integer inputs 1989 DOI 10 1109 SFCS 1989 63495 David Eppstein Spanning trees and spanners Handbook of Computational Geometry Elsevier 1999 Martin Mares Two linear time algorithms for MST on minor closed graph classes Archivum mathematicum 2004 T 40 vip 3 z dzherela 9 travnya 2009 Procitovano 13 chervnya 2022 Pankaj K Agarwal Herbert Edelsbrunner Schwarzkopf O Emo Welzl Euclidean minimum spanning trees and bichromatic closest pairs Discrete and Computational Geometry Springer 1991 T 6 vip 1 DOI 10 1007 BF02574698 Chatterjee S Connor M Kumar P Geometric minimum spanning trees with GeoFilterKruskal Symposium on Experimental Algorithms Paola Festa Springer Verlag 2010 T 6049 Lecture Notes in Computer Science DOI 10 1007 978 3 642 13193 6 41 Michiel Smid The well separated pair decomposition and its applications 2005 August z dzherela 18 lyutogo 2022 Procitovano 2014 03 26 Jerzy W Jaromczyk Godfried T Toussaint Relative neighborhood graphs and their relatives Proceedings of the IEEE 1992 T 80 Godfried T Toussaint Comment on algorithms for computing relative neighborhood graph Electronics Letters 1981 T 16 22 October Godfried T Toussaint The relative neighborhood graph of a finite planar set Pattern Recognition 1980 T 12 Robert Pless Associate Professor of Computer Science and Engineering Lecture 17 Voronoi Diagrams and Delauney Triangulations 2 Washington University 2003 z dzherela 2 sichnya 2018 Robert Sedgewick Kevin Wayne Minimum Spanning Tree lecture notes Computer Science 226 Algorithms amp Data Structures Princeton University 2007 z dzherela 22 travnya 2022 Procitovano 13 chervnya 2022 J Michael Steele Growth rates of Euclidean minimum spanning trees with power weighted edges The Annals of Probability 1988 T 16 vip 4 DOI 10 1214 aop 1176991596 z dzherela 6 travnya 2021 Procitovano 13 chervnya 2022 Peter Eades Sue Whitesides The realization problem for Evklidovo minimalnoe ostovnoe derevo s is NP hard Proc 10th ACM Symposium on Computational Geometry 1994 DOI 10 1145 177424 177507 Smith College The Open Problems Project Problem 5 Euclidean Minimum Spanning Tree 10 grudnya 2016 u Wayback Machine Max Planck Institut fuer Informatik Exercise solutions by Kavitha Telikepalli Postscript