Кажуть, що ґаусове число ділиться на ненульове ґаусове число , якщо існує таке ґаусове число , для якого .
Відношення подільності позначається таким чином: .
При цьому число називають дільником числа .
Ґаусове число називають простим, якщо воно не є дільником одиниці і має рівно 8 дільників: .
Ця стаття містить таблицю, в якій наведено кількість, суму 4-тих степенів та добуток усіх дільників для ґаусових чисел з нормою, що не перевищує 1000.
Позначення в таблиці
- – це кількість дільників ненульового ґаусового числа ;
- – це сума 4-тих степенів усіх дільників ненульового ґаусового числа ;
- – це добуток усіх дільників ненульового ґаусового числа .
Примітка
- Оскільки у асоційованих ґаусових чисел множини дільників є рівними, то в таблиці будуть вказані лише ґаусові числа з першої координатної чверті.
- Якщо – дільник ґаусового числа , то та теж є дільниками числа . Звідси випливає, що для будь-якого натурального , не кратного 4, сума -тих степенів усіх дільників числа дорівнює 0. Тому в цій таблиці розглядається саме сума 4-тих степенів усіх дільників ненульового ґаусового числа.
Таблиця дільників
Норма | Число | Розклад | |||
---|---|---|---|---|---|
2 | 1+i | просте | 8 | −12 | (1+i)4 |
4 | 2 | −i·(1+i)2 | 12 | 52 | 26 |
5 | 1+2i 2+i | просте просте | 8 8 | −24−96i −24+96i | (1+2i)4 (2+i)4 |
8 | 2+2i | −i·(1+i)3 | 16 | −204 | (2+2i)8 |
9 | 3 | просте | 8 | 328 | 34 |
10 | 1+3i 3+i | (1+i)·(2+i) −i·(1+i)·(1+2i) | 16 16 | 72−288i 72+288i | (1+3i)8 (3+i)8 |
13 | 2+3i 3+2i | просте просте | 8 8 | −472−480i −472+480i | (2+3i)4 (3+2i)4 |
16 | 4 | −(1+i)4 | 20 | 820 | −410 |
17 | 1+4i 4+i | просте просте | 8 8 | 648−960i 648+960i | (1+4i)4 (4+i)4 |
18 | 3+3i | (1+i)·3 | 16 | −984 | (3+3i)8 |
20 | 2+4i 4+2i | −i·(1+i)2·(1+2i) −i·(1+i)2·(2+i) | 24 24 | −312−1248i −312+1248i | (2+4i)12 (4+2i)12 |
25 | 3+4i 4+3i 5 | (2+i)2 −i·(1+2i)2 −i·(1+2i)·(2+i) | 12 12 16 | −2132−1248i −2132+1248i 2448 | −(3+4i)6 (4+3i)6 58 |
26 | 1+5i 5+i | (1+i)·(3+2i) −i·(1+i)·(2+3i) | 16 16 | 1416−1440i 1416+1440i | (1+5i)8 (5+i)8 |
29 | 2+5i 5+2i | просте просте | 8 8 | 168−3360i 168+3360i | (2+5i)4 (5+2i)4 |
32 | 4+4i | −(1+i)5 | 24 | −3276 | (4+4i)12 |
34 | 3+5i 5+3i | (1+i)·(4+i) −i·(1+i)·(1+4i) | 16 16 | −1944−2880i −1944+2880i | (3+5i)8 (5+3i)8 |
36 | 6 | −i·(1+i)2·3 | 24 | 4264 | 612 |
37 | 1+6i 6+i | просте просте | 8 8 | 4328−3360i 4328+3360i | (1+6i)4 (6+i)4 |
40 | 2+6i 6+2i | −i·(1+i)3·(2+i) −(1+i)3·(1+2i) | 32 32 | 1224−4896i 1224+4896i | (2+6i)16 (6+2i)16 |
41 | 4+5i 5+4i | просте просте | 8 8 | −6072−2880i −6072+2880i | (4+5i)4 (5+4i)4 |
45 | 3+6i 6+3i | (1+2i)·3 (2+i)·3 | 16 16 | −1968−7872i −1968+7872i | (3+6i)8 (6+3i)8 |
49 | 7 | просте | 8 | 9608 | 74 |
50 | 5+5i 1+7i 7+i | −i·(1+i)·(1+2i)·(2+i) −i·(1+i)·(1+2i)2 −i·(1+i)·(2+i)2 | 32 24 24 | −7344 6396−3744i 6396+3744i | (5+5i)16 (1+7i)12 (7+i)12 |
52 | 4+6i 6+4i | −i·(1+i)2·(2+3i) −i·(1+i)2·(3+2i) | 24 24 | −6136−6240i −6136+6240i | (4+6i)12 (6+4i)12 |
53 | 2+7i 7+2i | просте просте | 8 8 | 4968−10080i 4968+10080i | (2+7i)4 (7+2i)4 |
58 | 3+7i 7+3i | (1+i)·(5+2i) −i·(1+i)·(2+5i) | 16 16 | −504−10080i −504+10080i | (3+7i)8 (7+3i)8 |
61 | 5+6i 6+5i | просте просте | 8 8 | −13912−5280i −13912+5280i | (5+6i)4 (6+5i)4 |
64 | 8 | i·(1+i)6 | 28 | 13108 | 814 |
65 | 4+7i 7+4i 1+8i 8+i | (2+i)·(3+2i) −i·(1+2i)·(2+3i) (2+i)·(2+3i) −i·(1+2i)·(3+2i) | 16 16 16 16 | −8688−14208i −8688+14208i 14352−8448i 14352+8448i | (4+7i)8 (7+4i)8 (1+8i)8 (8+i)8 |
68 | 2+8i 8+2i | −i·(1+i)2·(1+4i) −i·(1+i)2·(4+i) | 24 24 | 8424−12480i 8424+12480i | (2+8i)12 (8+2i)12 |
72 | 6+6i | −i·(1+i)3·3 | 32 | −16728 | (6+6i)16 |
73 | 3+8i 8+3i | просте просте | 8 8 | 2888−21120i 2888+21120i | (3+8i)4 (8+3i)4 |
74 | 5+7i 7+5i | (1+i)·(6+i) −i·(1+i)·(1+6i) | 16 16 | −12984−10080i −12984+10080i | (5+7i)8 (7+5i)8 |
80 | 4+8i 8+4i | −(1+i)4·(1+2i) −(1+i)4·(2+i) | 40 40 | −4920−19680i −4920+19680i | (4+8i)20 (8+4i)20 |
81 | 9 | 32 | 12 | 26572 | −96 |
82 | 1+9i 9+i | (1+i)·(5+4i) −i·(1+i)·(4+5i) | 16 16 | 18216−8640i 18216+8640i | (1+9i)8 (9+i)8 |
85 | 6+7i 7+6i 2+9i 9+2i | −i·(1+2i)·(1+4i) (2+i)·(4+i) (1+2i)·(4+i) −i·(1+4i)·(2+i) | 16 16 16 16 | −26928−9792i −26928+9792i 19152−21312i 19152+21312i | (6+7i)8 (7+6i)8 (2+9i)8 (9+2i)8 |
89 | 5+8i 8+5i | просте просте | 8 8 | −19512−24960i −19512+24960i | (5+8i)4 (8+5i)4 |
90 | 3+9i 9+3i | (1+i)·(2+i)·3 −i·(1+i)·(1+2i)·3 | 32 32 | 5904−23616i 5904+23616i | (3+9i)16 (9+3i)16 |
97 | 4+9i 9+4i | просте просте | 8 8 | −3832−37440i −3832+37440i | (4+9i)4 (9+4i)4 |
98 | 7+7i | (1+i)·7 | 16 | −28824 | (7+7i)8 |
100 | 6+8i 8+6i 10 | −i·(1+i)2·(2+i)2 −(1+i)2·(1+2i)2 −(1+i)2·(1+2i)·(2+i) | 36 36 48 | −27716−16224i −27716+16224i 31824 | (6+8i)18 −(8+6i)18 1024 |
101 | 1+10i 10+i | просте просте | 8 8 | 37608−15840i 37608+15840i | (1+10i)4 (10+i)4 |
104 | 2+10i 10+2i | −i·(1+i)3·(3+2i) −(1+i)3·(2+3i) | 32 32 | 24072−24480i 24072+24480i | (2+10i)16 (10+2i)16 |
106 | 5+9i 9+5i | (1+i)·(7+2i) −i·(1+i)·(2+7i) | 16 16 | −14904−30240i −14904+30240i | (5+9i)8 (9+5i)8 |
109 | 3+10i 10+3i | просте просте | 8 8 | 18728−43680i 18728+43680i | (3+10i)4 (10+3i)4 |
113 | 7+8i 8+7i | просте просте | 8 8 | −49272−13440i −49272+13440i | (7+8i)4 (8+7i)4 |
116 | 4+10i 10+4i | −i·(1+i)2·(2+5i) −i·(1+i)2·(5+2i) | 24 24 | 2184−43680i 2184+43680i | (4+10i)12 (10+4i)12 |
117 | 6+9i 9+6i | (2+3i)·3 3·(3+2i) | 16 16 | −38704−39360i −38704+39360i | (6+9i)8 (9+6i)8 |
121 | 11 | просте | 8 | 58568 | 114 |
122 | 1+11i 11+i | (1+i)·(6+5i) −i·(1+i)·(5+6i) | 16 16 | 41736−15840i 41736+15840i | (1+11i)8 (11+i)8 |
125 | 5+10i 10+5i 2+11i 11+2i | −i·(1+2i)2·(2+i) −i·(1+2i)·(2+i)2 (2+i)3 −(1+2i)3 | 24 24 16 16 | −17160−58656i −17160+58656i 44880−42432i 44880+42432i | (5+10i)12 (10+5i)12 (2+11i)8 (11+2i)8 |
128 | 8+8i | i·(1+i)7 | 32 | −52428 | (8+8i)16 |
130 | 7+9i 9+7i 3+11i 11+3i | −i·(1+i)·(1+2i)·(3+2i) −i·(1+i)·(2+i)·(2+3i) −i·(1+i)·(1+2i)·(2+3i) −i·(1+i)·(2+i)·(3+2i) | 32 32 32 32 | −43056−25344i −43056+25344i 26064−42624i 26064+42624i | (7+9i)16 (9+7i)16 (3+11i)16 (11+3i)16 |
136 | 6+10i 10+6i | −i·(1+i)3·(4+i) −(1+i)3·(1+4i) | 32 32 | −33048−48960i −33048+48960i | (6+10i)16 (10+6i)16 |
137 | 4+11i 11+4i | просте просте | 8 8 | 13128−73920i 13128+73920i | (4+11i)4 (11+4i)4 |
144 | 12 | −(1+i)4·3 | 40 | 67240 | 1220 |
145 | 8+9i 9+8i 1+12i 12+i | (2+i)·(5+2i) −i·(1+2i)·(2+5i) (1+2i)·(5+2i) −i·(2+i)·(2+5i) | 16 16 16 16 | −81648−16128i −81648+16128i 79632−24192i 79632+24192i | (8+9i)8 (9+8i)8 (1+12i)8 (12+i)8 |
146 | 5+11i 11+5i | (1+i)·(8+3i) −i·(1+i)·(3+8i) | 16 16 | −8664−63360i −8664+63360i | (5+11i)8 (11+5i)8 |
148 | 2+12i 12+2i | −i·(1+i)2·(1+6i) −i·(1+i)2·(6+i) | 24 24 | 56264−43680i 56264+43680i | (2+12i)12 (12+2i)12 |
149 | 7+10i 10+7i | просте просте | 8 8 | −67992−57120i −67992+57120i | (7+10i)4 (10+7i)4 |
153 | 3+12i 12+3i | (1+4i)·3 3·(4+i) | 16 16 | 53136−78720i 53136+78720i | (3+12i)8 (12+3i)8 |
157 | 6+11i 11+6i | просте просте | 8 8 | −40792−89760i −40792+89760i | (6+11i)4 (11+6i)4 |
160 | 4+12i 12+4i | −(1+i)5·(2+i) i·(1+i)5·(1+2i) | 48 48 | 19656−78624i 19656+78624i | (4+12i)24 (12+4i)24 |
162 | 9+9i | (1+i)·32 | 24 | −79716 | (9+9i)12 |
164 | 8+10i 10+8i | −i·(1+i)2·(4+5i) −i·(1+i)2·(5+4i) | 24 24 | −78936−37440i −78936+37440i | (8+10i)12 (10+8i)12 |
169 | 5+12i 12+5i 13 | (3+2i)2 −i·(2+3i)2 −i·(2+3i)·(3+2i) | 12 12 16 | −1428−113760i −1428+113760i 113296 | −(5+12i)6 (12+5i)6 138 |
170 | 7+11i 11+7i 1+13i 13+i | −i·(1+i)·(1+4i)·(2+i) −i·(1+i)·(1+2i)·(4+i) (1+i)·(2+i)·(4+i) −(1+i)·(1+2i)·(1+4i) | 32 32 32 32 | −57456−63936i −57456+63936i 80784−29376i 80784+29376i | (7+11i)16 (11+7i)16 (1+13i)16 (13+i)16 |
173 | 2+13i 13+2i | просте просте | 8 8 | 98088−68640i 98088+68640i | (2+13i)4 (13+2i)4 |
178 | 3+13i 13+3i | (1+i)·(8+5i) −i·(1+i)·(5+8i) | 16 16 | 58536−74880i 58536+74880i | (3+13i)8 (13+3i)8 |
180 | 6+12i 12+6i | −i·(1+i)2·(1+2i)·3 −i·(1+i)2·(2+i)·3 | 48 48 | −25584−102336i −25584+102336i | (6+12i)24 (12+6i)24 |
181 | 9+10i 10+9i | просте просте | 8 8 | −128152−27360i −128152+27360i | (9+10i)4 (10+9i)4 |
185 | 8+11i 11+8i 4+13i 13+4i | −i·(1+2i)·(1+6i) (2+i)·(6+i) (1+2i)·(6+i) −i·(1+6i)·(2+i) | 16 16 16 16 | −106608−83712i −106608+83712i 54672−124032i 54672+124032i | (8+11i)8 (11+8i)8 (4+13i)8 (13+4i)8 |
193 | 7+12i 12+7i | просте просте | 8 8 | −76792−127680i −76792+127680i | (7+12i)4 (12+7i)4 |
194 | 5+13i 13+5i | (1+i)·(9+4i) −i·(1+i)·(4+9i) | 16 16 | 11496−112320i 11496+112320i | (5+13i)8 (13+5i)8 |
196 | 14 | −i·(1+i)2·7 | 24 | 124904 | 1412 |
197 | 1+14i 14+i | просте просте | 8 8 | 148968−43680i 148968+43680i | (1+14i)4 (14+i)4 |
200 | 10+10i 2+14i 14+2i | −(1+i)3·(1+2i)·(2+i) −(1+i)3·(1+2i)2 −(1+i)3·(2+i)2 | 64 48 48 | −124848 108732−63648i 108732+63648i | (10+10i)32 (2+14i)24 (14+2i)24 |
202 | 9+11i 11+9i | (1+i)·(10+i) −i·(1+i)·(1+10i) | 16 16 | −112824−47520i −112824+47520i | (9+11i)8 (11+9i)8 |
205 | 6+13i 13+6i 3+14i 14+3i | (2+i)·(5+4i) −i·(1+2i)·(4+5i) (2+i)·(4+5i) −i·(1+2i)·(5+4i) | 16 16 16 16 | −32688−163008i −32688+163008i 105552−128448i 105552+128448i | (6+13i)8 (13+6i)8 (3+14i)8 (14+3i)8 |
208 | 8+12i 12+8i | −(1+i)4·(2+3i) −(1+i)4·(3+2i) | 40 40 | −96760−98400i −96760+98400i | (8+12i)20 (12+8i)20 |
212 | 4+14i 14+4i | −i·(1+i)2·(2+7i) −i·(1+i)2·(7+2i) | 24 24 | 64584−131040i 64584+131040i | (4+14i)12 (14+4i)12 |
218 | 7+13i 13+7i | (1+i)·(10+3i) −i·(1+i)·(3+10i) | 16 16 | −56184−131040i −56184+131040i | (7+13i)8 (13+7i)8 |
221 | 10+11i 11+10i 5+14i 14+5i | (3+2i)·(4+i) −i·(1+4i)·(2+3i) (2+3i)·(4+i) −i·(1+4i)·(3+2i) | 16 16 16 16 | −191664−35520i −191664+35520i 38736−191040i 38736+191040i | (10+11i)8 (11+10i)8 (5+14i)8 (14+5i)8 |
225 | 9+12i 12+9i 15 | (2+i)2·3 −i·(1+2i)2·3 −i·(1+2i)·(2+i)·3 | 24 24 32 | −174824−102336i −174824+102336i 200736 | (9+12i)12 (12+9i)12 1516 |
226 | 1+15i 15+i | (1+i)·(8+7i) −i·(1+i)·(7+8i) | 16 16 | 147816−40320i 147816+40320i | (1+15i)8 (15+i)8 |
229 | 2+15i 15+2i | просте просте | 8 8 | 180968−106080i 180968+106080i | (2+15i)4 (15+2i)4 |
232 | 6+14i 14+6i | −i·(1+i)3·(5+2i) −(1+i)3·(2+5i) | 32 32 | −8568−171360i −8568+171360i | (6+14i)16 (14+6i)16 |
233 | 8+13i 13+8i | просте просте | 8 8 | −128952−174720i −128952+174720i | (8+13i)4 (13+8i)4 |
234 | 3+15i 15+3i | (1+i)·3·(3+2i) −i·(1+i)·(2+3i)·3 | 32 32 | 116112−118080i 116112+118080i | (3+15i)16 (15+3i)16 |
241 | 4+15i 15+4i | просте просте | 8 8 | 117128−200640i 117128+200640i | (4+15i)4 (15+4i)4 |
242 | 11+11i | (1+i)·11 | 16 | −175704 | (11+11i)8 |
244 | 10+12i 12+10i | −i·(1+i)2·(5+6i) −i·(1+i)2·(6+5i) | 24 24 | −180856−68640i −180856+68640i | (10+12i)12 (12+10i)12 |
245 | 7+14i 14+7i | (1+2i)·7 (2+i)·7 | 16 16 | −57648−230592i −57648+230592i | (7+14i)8 (14+7i)8 |
250 | 9+13i 13+9i 5+15i 15+5i | −(1+i)·(1+2i)3 −i·(1+i)·(2+i)3 −i·(1+i)·(1+2i)·(2+i)2 −(1+i)·(1+2i)2·(2+i) | 32 32 48 48 | −134640−127296i −134640+127296i 51480−175968i 51480+175968i | (9+13i)16 (13+9i)16 (5+15i)24 (15+5i)24 |
256 | 16 | (1+i)8 | 36 | 209716 | −1618 |
257 | 1+16i 16+i | просте просте | 8 8 | 256008−65280i 256008+65280i | (1+16i)4 (16+i)4 |
260 | 8+14i 14+8i 2+16i 16+2i | −i·(1+i)2·(2+i)·(3+2i) −(1+i)2·(1+2i)·(2+3i) −i·(1+i)2·(2+i)·(2+3i) −(1+i)2·(1+2i)·(3+2i) | 48 48 48 48 | −112944−184704i −112944+184704i 186576−109824i 186576+109824i | (8+14i)24 (14+8i)24 (2+16i)24 (16+2i)24 |
261 | 6+15i 15+6i | (2+5i)·3 3·(5+2i) | 16 16 | 13776−275520i 13776+275520i | (6+15i)8 (15+6i)8 |
265 | 11+12i 12+11i 3+16i 16+3i | −i·(1+2i)·(2+7i) (2+i)·(7+2i) (1+2i)·(7+2i) −i·(2+i)·(2+7i) | 16 16 16 16 | −271728−58752i −271728+58752i 212112−179712i 212112+179712i | (11+12i)8 (12+11i)8 (3+16i)8 (16+3i)8 |
269 | 10+13i 13+10i | просте просте | 8 8 | −251352−143520i −251352+143520i | (10+13i)4 (13+10i)4 |
272 | 4+16i 16+4i | −(1+i)4·(1+4i) −(1+i)4·(4+i) | 40 40 | 132840−196800i 132840+196800i | (4+16i)20 (16+4i)20 |
274 | 7+15i 15+7i | (1+i)·(11+4i) −i·(1+i)·(4+11i) | 16 16 | −39384−221760i −39384+221760i | (7+15i)8 (15+7i)8 |
277 | 9+14i 14+9i | просте просте | 8 8 | −201112−231840i −201112+231840i | (9+14i)4 (14+9i)4 |
281 | 5+16i 16+5i | просте просте | 8 8 | 111048−295680i 111048+295680i | (5+16i)4 (16+5i)4 |
288 | 12+12i | −(1+i)5·3 | 48 | −268632 | (12+12i)24 |
289 | 8+15i 15+8i 17 | −i·(1+4i)2 (4+i)2 −i·(1+4i)·(4+i) | 12 12 16 | −126068−310080i −126068+310080i 335376 | (8+15i)6 −(15+8i)6 178 |
290 | 11+13i 13+11i 1+17i 17+i | −i·(1+i)·(2+i)·(2+5i) −i·(1+i)·(1+2i)·(5+2i) −i·(1+i)·(1+2i)·(2+5i) −i·(1+i)·(2+i)·(5+2i) | 32 32 32 32 | −238896−72576i −238896+72576i 244944−48384i 244944+48384i | (11+13i)16 (13+11i)16 (1+17i)16 (17+i)16 |
292 | 6+16i 16+6i | −i·(1+i)2·(3+8i) −i·(1+i)2·(8+3i) | 24 24 | 37544−274560i 37544+274560i | (6+16i)12 (16+6i)12 |
293 | 2+17i 17+2i | просте просте | 8 8 | 306408−155040i 306408+155040i | (2+17i)4 (17+2i)4 |
296 | 10+14i 14+10i | −i·(1+i)3·(6+i) −(1+i)3·(1+6i) | 32 32 | −220728−171360i −220728+171360i | (10+14i)16 (14+10i)16 |
298 | 3+17i 17+3i | (1+i)·(10+7i) −i·(1+i)·(7+10i) | 16 16 | 203976−171360i 203976+171360i | (3+17i)8 (17+3i)8 |
305 | 7+16i 16+7i 4+17i 17+4i | (2+i)·(6+5i) −i·(1+2i)·(5+6i) (2+i)·(5+6i) −i·(1+2i)·(6+5i) | 16 16 16 16 | −43248−365568i −43248+365568i 210192−302208i 210192+302208i | (7+16i)8 (16+7i)8 (4+17i)8 (17+4i)8 |
306 | 9+15i 15+9i | (1+i)·3·(4+i) −i·(1+i)·(1+4i)·3 | 32 32 | −159408−236160i −159408+236160i | (9+15i)16 (15+9i)16 |
313 | 12+13i 13+12i | просте просте | 8 8 | −386872−62400i −386872+62400i | (12+13i)4 (13+12i)4 |
314 | 5+17i 17+5i | (1+i)·(11+6i) −i·(1+i)·(6+11i) | 16 16 | 122376−269280i 122376+269280i | (5+17i)8 (17+5i)8 |
317 | 11+14i 14+11i | просте просте | 8 8 | −356952−184800i −356952+184800i | (11+14i)4 (14+11i)4 |
320 | 8+16i 16+8i | i·(1+i)6·(1+2i) i·(1+i)6·(2+i) | 56 56 | −78648−314592i −78648+314592i | (8+16i)28 (16+8i)28 |
324 | 18 | −i·(1+i)2·32 | 36 | 345436 | 1818 |
325 | 10+15i 15+10i 6+17i 17+6i 1+18i 18+i | −i·(1+2i)·(2+i)·(2+3i) −i·(1+2i)·(2+i)·(3+2i) −i·(1+2i)2·(3+2i) −i·(2+i)2·(2+3i) (2+i)2·(3+2i) −(1+2i)2·(2+3i) | 32 32 24 24 24 24 | −288864−293760i −288864+293760i 101816−403104i 101816+403104i 401336−108576i 401336+108576i | (10+15i)16 (15+10i)16 (6+17i)12 (17+6i)12 (1+18i)12 (18+i)12 |
328 | 2+18i 18+2i | −i·(1+i)3·(5+4i) −(1+i)3·(4+5i) | 32 32 | 309672−146880i 309672+146880i | (2+18i)16 (18+2i)16 |
333 | 3+18i 18+3i | (1+6i)·3 3·(6+i) | 16 16 | 354896−275520i 354896+275520i | (3+18i)8 (18+3i)8 |
337 | 9+16i 16+9i | просте просте | 8 8 | −209272−403200i −209272+403200i | (9+16i)4 (16+9i)4 |
338 | 13+13i 7+17i 17+7i | −i·(1+i)·(2+3i)·(3+2i) −i·(1+i)·(2+3i)2 −i·(1+i)·(3+2i)2 | 32 24 24 | −339888 4284−341280i 4284+341280i | (13+13i)16 (7+17i)12 (17+7i)12 |
340 | 12+14i 14+12i 4+18i 18+4i | −(1+i)2·(1+2i)·(1+4i) −i·(1+i)2·(2+i)·(4+i) −i·(1+i)2·(1+2i)·(4+i) −(1+i)2·(1+4i)·(2+i) | 48 48 48 48 | −350064−127296i −350064+127296i 248976−277056i 248976+277056i | (12+14i)24 (14+12i)24 (4+18i)24 (18+4i)24 |
346 | 11+15i 15+11i | (1+i)·(13+2i) −i·(1+i)·(2+13i) | 16 16 | −294264−205920i −294264+205920i | (11+15i)8 (15+11i)8 |
349 | 5+18i 18+5i | просте просте | 8 8 | 228008−430560i 228008+430560i | (5+18i)4 (18+5i)4 |
353 | 8+17i 17+8i | просте просте | 8 8 | −93432−489600i −93432+489600i | (8+17i)4 (17+8i)4 |
356 | 10+16i 16+10i | −i·(1+i)2·(5+8i) −i·(1+i)2·(8+5i) | 24 24 | −253656−324480i −253656+324480i | (10+16i)12 (16+10i)12 |
360 | 6+18i 18+6i | −i·(1+i)3·(2+i)·3 −(1+i)3·(1+2i)·3 | 64 64 | 100368−401472i 100368+401472i | (6+18i)32 (18+6i)32 |
361 | 19 | просте | 8 | 521288 | 194 |
362 | 1+19i 19+i | (1+i)·(10+9i) −i·(1+i)·(9+10i) | 16 16 | 384456−82080i 384456+82080i | (1+19i)8 (19+i)8 |
365 | 13+14i 14+13i 2+19i 19+2i | (2+i)·(8+3i) −i·(1+2i)·(3+8i) (1+2i)·(8+3i) −i·(2+i)·(3+8i) | 16 16 16 16 | −524208−57408i −524208+57408i 489552−196032i 489552+196032i | (13+14i)8 (14+13i)8 (2+19i)8 (19+2i)8 |
369 | 12+15i 15+12i | 3·(4+5i) 3·(5+4i) | 16 16 | −497904−236160i −497904+236160i | (12+15i)8 (15+12i)8 |
370 | 9+17i 17+9i 3+19i 19+3i | −i·(1+i)·(1+6i)·(2+i) −i·(1+i)·(1+2i)·(6+i) (1+i)·(2+i)·(6+i) −(1+i)·(1+2i)·(1+6i) | 32 32 32 32 | −164016−372096i −164016+372096i 319824−251136i 319824+251136i | (9+17i)16 (17+9i)16 (3+19i)16 (19+3i)16 |
373 | 7+18i 18+7i | просте просте | 8 8 | 48488−554400i 48488+554400i | (7+18i)4 (18+7i)4 |
377 | 11+16i 16+11i 4+19i 19+4i | (3+2i)·(5+2i) −i·(2+3i)·(2+5i) (2+3i)·(5+2i) −i·(2+5i)·(3+2i) | 16 16 16 16 | −423024−376320i −423024+376320i 383376−416640i 383376+416640i | (11+16i)8 (16+11i)8 (4+19i)8 (19+4i)8 |
386 | 5+19i 19+5i | (1+i)·(12+7i) −i·(1+i)·(7+12i) | 16 16 | 230376−383040i 230376+383040i | (5+19i)8 (19+5i)8 |
388 | 8+18i 18+8i | −i·(1+i)2·(4+9i) −i·(1+i)2·(9+4i) | 24 24 | −49816−486720i −49816+486720i | (8+18i)12 (18+8i)12 |
389 | 10+17i 17+10i | просте просте | 8 8 | −319512−514080i −319512+514080i | (10+17i)4 (17+10i)4 |
392 | 14+14i | −i·(1+i)3·7 | 32 | −490008 | (14+14i)16 |
394 | 13+15i 15+13i | (1+i)·(14+i) −i·(1+i)·(1+14i) | 16 16 | −446904−131040i −446904+131040i | (13+15i)8 (15+13i)8 |
397 | 6+19i 19+6i | просте просте | 8 8 | 214568−592800i 214568+592800i | (6+19i)4 (19+6i)4 |
400 | 12+16i 16+12i 20 | −(1+i)4·(2+i)2 i·(1+i)4·(1+2i)2 i·(1+i)4·(1+2i)·(2+i) | 60 60 80 | −437060−255840i −437060+255840i 501840 | −(12+16i)30 (16+12i)30 2040 |
401 | 1+20i 20+i | просте просте | 8 8 | 630408−127680i 630408+127680i | (1+20i)4 (20+i)4 |
404 | 2+20i 20+2i | −i·(1+i)2·(1+10i) −i·(1+i)2·(10+i) | 24 24 | 488904−205920i 488904+205920i | (2+20i)12 (20+2i)12 |
405 | 9+18i 18+9i | (1+2i)·32 (2+i)·32 | 24 24 | −159432−637728i −159432+637728i | (9+18i)12 (18+9i)12 |
409 | 3+20i 20+3i | просте просте | 8 8 | 553928−375360i 553928+375360i | (3+20i)4 (20+3i)4 |
410 | 11+17i 17+11i 7+19i 19+7i | −i·(1+i)·(1+2i)·(5+4i) −i·(1+i)·(2+i)·(4+5i) −i·(1+i)·(1+2i)·(4+5i) −i·(1+i)·(2+i)·(5+4i) | 32 32 32 32 | −316656−385344i −316656+385344i 98064−489024i 98064+489024i | (11+17i)16 (17+11i)16 (7+19i)16 (19+7i)16 |
416 | 4+20i 20+4i | −(1+i)5·(3+2i) i·(1+i)5·(2+3i) | 48 48 | 386568−393120i 386568+393120i | (4+20i)24 (20+4i)24 |
421 | 14+15i 15+14i | просте просте | 8 8 | −702232−97440i −702232+97440i | (14+15i)4 (15+14i)4 |
424 | 10+18i 18+10i | −i·(1+i)3·(7+2i) −(1+i)3·(2+7i) | 32 32 | −253368−514080i −253368+514080i | (10+18i)16 (18+10i)16 |
425 | 13+16i 16+13i 8+19i 19+8i 5+20i 20+5i | −i·(1+2i)2·(4+i) −i·(1+4i)·(2+i)2 (2+i)2·(4+i) −(1+2i)2·(1+4i) −i·(1+2i)·(1+4i)·(2+i) −i·(1+2i)·(2+i)·(4+i) | 24 24 24 24 32 32 | −644904−309504i −644904+309504i −45864−713856i −45864+713856i 396576−587520i 396576+587520i | (13+16i)12 (16+13i)12 (8+19i)12 (19+8i)12 (5+20i)16 (20+5i)16 |
433 | 12+17i 17+12i | просте просте | 8 8 | −581752−473280i −581752+473280i | (12+17i)4 (17+12i)4 |
436 | 6+20i 20+6i | −i·(1+i)2·(3+10i) −i·(1+i)2·(10+3i) | 24 24 | 243464−567840i 243464+567840i | (6+20i)12 (20+6i)12 |
441 | 21 | 3·7 | 16 | 787856 | 218 |
442 | 9+19i 19+9i 1+21i 21+i | −i·(1+i)·(1+4i)·(3+2i) −i·(1+i)·(2+3i)·(4+i) −i·(1+i)·(1+4i)·(2+3i) −i·(1+i)·(3+2i)·(4+i) | 32 32 32 32 | −116208−573120i −116208+573120i 574992−106560i 574992+106560i | (9+19i)16 (19+9i)16 (1+21i)16 (21+i)16 |
445 | 11+18i 18+11i 2+21i 21+2i | (2+i)·(8+5i) −i·(1+2i)·(5+8i) (2+i)·(5+8i) −i·(1+2i)·(8+5i) | 16 16 16 16 | −481968−618048i −481968+618048i 716112−318528i 716112+318528i | (11+18i)8 (18+11i)8 (2+21i)8 (21+2i)8 |
449 | 7+20i 20+7i | просте просте | 8 8 | 179208−786240i 179208+786240i | (7+20i)4 (20+7i)4 |
450 | 15+15i 3+21i 21+3i | −i·(1+i)·(1+2i)·(2+i)·3 −i·(1+i)·(1+2i)2·3 −i·(1+i)·(2+i)2·3 | 64 48 48 | −602208 524472−307008i 524472+307008i | (15+15i)32 (3+21i)24 (21+3i)24 |
452 | 14+16i 16+14i | −i·(1+i)2·(7+8i) −i·(1+i)2·(8+7i) | 24 24 | −640536−174720i −640536+174720i | (14+16i)12 (16+14i)12 |
457 | 4+21i 21+4i | просте просте | 8 8 | 609608−571200i 609608+571200i | (4+21i)4 (21+4i)4 |
458 | 13+17i 17+13i | (1+i)·(15+2i) −i·(1+i)·(2+15i) | 16 16 | −542904−318240i −542904+318240i | (13+17i)8 (17+13i)8 |
461 | 10+19i 19+10i | просте просте | 8 8 | −305112−793440i −305112+793440i | (10+19i)4 (19+10i)4 |
464 | 8+20i 20+8i | −(1+i)4·(2+5i) −(1+i)4·(5+2i) | 40 40 | 34440−688800i 34440+688800i | (8+20i)20 (20+8i)20 |
466 | 5+21i 21+5i | (1+i)·(13+8i) −i·(1+i)·(8+13i) | 16 16 | 386856−524160i 386856+524160i | (5+21i)8 (21+5i)8 |
468 | 12+18i 18+12i | −i·(1+i)2·(2+3i)·3 −i·(1+i)2·3·(3+2i) | 48 48 | −503152−511680i −503152+511680i | (12+18i)24 (18+12i)24 |
477 | 6+21i 21+6i | (2+7i)·3 3·(7+2i) | 16 16 | 407376−826560i 407376+826560i | (6+21i)8 (21+6i)8 |
481 | 15+16i 16+15i 9+20i 20+9i | −i·(1+6i)·(2+3i) (3+2i)·(6+i) (2+3i)·(6+i) −i·(1+6i)·(3+2i) | 16 16 16 16 | −913904−122880i −913904+122880i −107504−915840i −107504+915840i | (15+16i)8 (16+15i)8 (9+20i)8 (20+9i)8 |
482 | 11+19i 19+11i | (1+i)·(15+4i) −i·(1+i)·(4+15i) | 16 16 | −351384−601920i −351384+601920i | (11+19i)8 (19+11i)8 |
484 | 22 | −i·(1+i)2·11 | 24 | 761384 | 2212 |
485 | 14+17i 17+14i 1+22i 22+i | (2+i)·(9+4i) −i·(1+2i)·(4+9i) (1+2i)·(9+4i) −i·(2+i)·(4+9i) | 16 16 16 16 | −875568−316608i −875568+316608i 921552−132672i 921552+132672i | (14+17i)8 (17+14i)8 (1+22i)8 (22+i)8 |
488 | 2+22i 22+2i | −i·(1+i)3·(6+5i) −(1+i)3·(5+6i) | 32 32 | 709512−269280i 709512+269280i | (2+22i)16 (22+2i)16 |
490 | 7+21i 21+7i | (1+i)·(2+i)·7 −i·(1+i)·(1+2i)·7 | 32 32 | 172944−691776i 172944+691776i | (7+21i)16 (21+7i)16 |
493 | 13+18i 18+13i 3+22i 22+3i | −i·(1+4i)·(2+5i) (4+i)·(5+2i) (2+5i)·(4+i) −i·(1+4i)·(5+2i) | 16 16 16 16 | −779184−584640i −779184+584640i 833616−504000i 833616+504000i | (13+18i)8 (18+13i)8 (3+22i)8 (22+3i)8 |
500 | 10+20i 20+10i 4+22i 22+4i | −(1+i)2·(1+2i)2·(2+i) −(1+i)2·(1+2i)·(2+i)2 −i·(1+i)2·(2+i)3 i·(1+i)2·(1+2i)3 | 72 72 48 48 | −223080−762528i −223080+762528i 583440−551616i 583440+551616i | (10+20i)36 (20+10i)36 (4+22i)24 (22+4i)24 |
505 | 12+19i 19+12i 8+21i 21+8i | −i·(1+2i)·(1+10i) (2+i)·(10+i) (1+2i)·(10+i) −i·(1+10i)·(2+i) | 16 16 16 16 | −605808−807552i −605808+807552i 154512−997632i 154512+997632i | (12+19i)8 (19+12i)8 (8+21i)8 (21+8i)8 |
509 | 5+22i 22+5i | просте просте | 8 8 | 649128−807840i 649128+807840i | (5+22i)4 (22+5i)4 |
512 | 16+16i | (1+i)9 | 40 | −838860 | (16+16i)20 |
514 | 15+17i 17+15i | (1+i)·(16+i) −i·(1+i)·(1+16i) | 16 16 | −768024−195840i −768024+195840i | (15+17i)8 (17+15i)8 |
520 | 14+18i 18+14i 6+22i 22+6i | −(1+i)3·(1+2i)·(3+2i) −(1+i)3·(2+i)·(2+3i) −(1+i)3·(1+2i)·(2+3i) −(1+i)3·(2+i)·(3+2i) | 64 64 64 64 | −731952−430848i −731952+430848i 443088−724608i 443088+724608i | (14+18i)32 (18+14i)32 (6+22i)32 (22+6i)32 |
521 | 11+20i 20+11i | просте просте | 8 8 | −463032−982080i −463032+982080i | (11+20i)4 (20+11i)4 |
522 | 9+21i 21+9i | (1+i)·3·(5+2i) −i·(1+i)·(2+5i)·3 | 32 32 | −41328−826560i −41328+826560i | (9+21i)16 (21+9i)16 |
529 | 23 | просте | 8 | 1119368 | 234 |
530 | 13+19i 19+13i 1+23i 23+i | −i·(1+i)·(2+i)·(2+7i) −i·(1+i)·(1+2i)·(7+2i) (1+i)·(2+i)·(7+2i) −(1+i)·(1+2i)·(2+7i) | 32 32 32 32 | −636336−539136i −636336+539136i 815184−176256i 815184+176256i | (13+19i)16 (19+13i)16 (1+23i)16 (23+i)16 |
533 | 7+22i 22+7i 2+23i 23+2i | (3+2i)·(5+4i) −i·(2+3i)·(4+5i) (3+2i)·(4+5i) −i·(2+3i)·(5+4i) | 16 16 16 16 | 370896−1068480i 370896+1068480i 1062096−388800i 1062096+388800i | (7+22i)8 (22+7i)8 (2+23i)8 (23+2i)8 |
538 | 3+23i 23+3i | (1+i)·(13+10i) −i·(1+i)·(10+13i) | 16 16 | 754056−430560i 754056+430560i | (3+23i)8 (23+3i)8 |
541 | 10+21i 21+10i | просте просте | 8 8 | −240472−1145760i −240472+1145760i | (10+21i)4 (21+10i)4 |
544 | 12+20i 20+12i | −(1+i)5·(4+i) i·(1+i)5·(1+4i) | 48 48 | −530712−786240i −530712+786240i | (12+20i)24 (20+12i)24 |
545 | 16+17i 17+16i 4+23i 23+4i | −i·(1+2i)·(3+10i) (2+i)·(10+3i) (1+2i)·(10+3i) −i·(2+i)·(3+10i) | 16 16 16 16 | −1160688−187392i −1160688+187392i 935952−711552i 935952+711552i | (16+17i)8 (17+16i)8 (4+23i)8 (23+4i)8 |
548 | 8+22i 22+8i | −i·(1+i)2·(4+11i) −i·(1+i)2·(11+4i) | 24 24 | 170664−960960i 170664+960960i | (8+22i)12 (22+8i)12 |
549 | 15+18i 18+15i | 3·(5+6i) 3·(6+5i) | 16 16 | −1140784−432960i −1140784+432960i | (15+18i)8 (18+15i)8 |
554 | 5+23i 23+5i | (1+i)·(14+9i) −i·(1+i)·(9+14i) | 16 16 | 603336−695520i 603336+695520i | (5+23i)8 (23+5i)8 |
557 | 14+19i 19+14i | просте просте | 8 8 | −1023192−702240i −1023192+702240i | (14+19i)4 (19+14i)4 |
562 | 11+21i 21+11i | (1+i)·(16+5i) −i·(1+i)·(5+16i) | 16 16 | −333144−887040i −333144+887040i | (11+21i)8 (21+11i)8 |
565 | 9+22i 22+9i 6+23i 23+6i | (2+i)·(8+7i) −i·(1+2i)·(7+8i) (2+i)·(7+8i) −i·(1+2i)·(8+7i) | 16 16 16 16 | −26928−1263168i −26928+1263168i 618192−1101888i 618192+1101888i | (9+22i)8 (22+9i)8 (6+23i)8 (23+6i)8 |
569 | 13+20i 20+13i | просте просте | 8 8 | −868152−960960i −868152+960960i | (13+20i)4 (20+13i)4 |
576 | 24 | i·(1+i)6·3 | 56 | 1074856 | 2428 |
577 | 1+24i 24+i | просте просте | 8 8 | 1313288−220800i 1313288+220800i | (1+24i)4 (24+i)4 |
578 | 17+17i 7+23i 23+7i | −i·(1+i)·(1+4i)·(4+i) (1+i)·(4+i)2 −(1+i)·(1+4i)2 | 32 24 24 | −1006128 378204−930240i 378204+930240i | (17+17i)16 (7+23i)12 (23+7i)12 |
580 | 16+18i 18+16i 2+24i 24+2i | −i·(1+i)2·(2+i)·(5+2i) −(1+i)2·(1+2i)·(2+5i) −i·(1+i)2·(1+2i)·(5+2i) −(1+i)2·(2+i)·(2+5i) | 48 48 48 48 | −1061424−209664i −1061424+209664i 1035216−314496i 1035216+314496i | (16+18i)24 (18+16i)24 (2+24i)24 (24+2i)24 |
584 | 10+22i 22+10i | −i·(1+i)3·(8+3i) −(1+i)3·(3+8i) | 32 32 | −147288−1077120i −147288+1077120i | (10+22i)16 (22+10i)16 |
585 | 12+21i 21+12i 3+24i 24+3i | (2+i)·3·(3+2i) −i·(1+2i)·(2+3i)·3 (2+i)·(2+3i)·3 −i·(1+2i)·3·(3+2i) | 32 32 32 32 | −712416−1165056i −712416+1165056i 1176864−692736i 1176864+692736i | (12+21i)16 (21+12i)16 (3+24i)16 (24+3i)16 |
586 | 15+19i 19+15i | (1+i)·(17+2i) −i·(1+i)·(2+17i) | 16 16 | −919224−465120i −919224+465120i | (15+19i)8 (19+15i)8 |
592 | 4+24i 24+4i | −(1+i)4·(1+6i) −(1+i)4·(6+i) | 40 40 | 887240−688800i 887240+688800i | (4+24i)20 (24+4i)20 |
593 | 8+23i 23+8i | просте просте | 8 8 | 323208−1368960i 323208+1368960i | (8+23i)4 (23+8i)4 |
596 | 14+20i 20+14i | −i·(1+i)2·(7+10i) −i·(1+i)2·(10+7i) | 24 24 | −883896−742560i −883896+742560i | (14+20i)12 (20+14i)12 |
601 | 5+24i 24+5i | просте просте | 8 8 | 984008−1057920i 984008+1057920i | (5+24i)4 (24+5i)4 |
605 | 11+22i 22+11i | (1+2i)·11 (2+i)·11 | 16 16 | −351408−1405632i −351408+1405632i | (11+22i)8 (22+11i)8 |
610 | 13+21i 21+13i 9+23i 23+9i | −i·(1+i)·(1+2i)·(6+5i) −i·(1+i)·(2+i)·(5+6i) −i·(1+i)·(1+2i)·(5+6i) −i·(1+i)·(2+i)·(6+5i) | 32 32 32 32 | −630576−906624i −630576+906624i 129744−1096704i 129744+1096704i | (13+21i)16 (21+13i)16 (9+23i)16 (23+9i)16 |
612 | 6+24i 24+6i | −i·(1+i)2·(1+4i)·3 −i·(1+i)2·3·(4+i) | 48 48 | 690768−1023360i 690768+1023360i | (6+24i)24 (24+6i)24 |
613 | 17+18i 18+17i | просте просте | 8 8 | −1493272−171360i −1493272+171360i | (17+18i)4 (18+17i)4 |
617 | 16+19i 19+16i | просте просте | 8 8 | −1434552−510720i −1434552+510720i | (16+19i)4 (19+16i)4 |
625 | 15+20i 20+15i 7+24i 24+7i 25 | −i·(1+2i)·(2+i)3 −(1+2i)3·(2+i) −(1+2i)4 −i·(2+i)4 −(1+2i)2·(2+i)2 | 32 32 20 20 36 | −1287648−822528i −1287648+822528i 704212−1374144i 704212+1374144i 1525732 | (15+20i)16 (20+15i)16 −(7+24i)10 (24+7i)10 −2518 |
626 | 1+25i 25+i | (1+i)·(13+12i) −i·(1+i)·(12+13i) | 16 16 | 1160616−187200i 1160616+187200i | (1+25i)8 (25+i)8 |
628 | 12+22i 22+12i | −i·(1+i)2·(6+11i) −i·(1+i)2·(11+6i) | 24 24 | −530296−1166880i −530296+1166880i | (12+22i)12 (22+12i)12 |
629 | 10+23i 23+10i 2+25i 25+2i | −i·(1+4i)·(1+6i) (4+i)·(6+i) (1+4i)·(6+i) −i·(1+6i)·(4+i) | 16 16 16 16 | −105264−1583040i −105264+1583040i 1507536−494400i 1507536+494400i | (10+23i)8 (23+10i)8 (2+25i)8 (25+2i)8 |
634 | 3+25i 25+3i | (1+i)·(14+11i) −i·(1+i)·(11+14i) | 16 16 | 1070856−554400i 1070856+554400i | (3+25i)8 (25+3i)8 |
637 | 14+21i 21+14i | (2+3i)·7 (3+2i)·7 | 16 16 | −1133744−1152960i −1133744+1152960i | (14+21i)8 (21+14i)8 |
640 | 8+24i 24+8i | i·(1+i)7·(2+i) (1+i)7·(1+2i) | 64 64 | 314568−1258272i 314568+1258272i | (8+24i)32 (24+8i)32 |
641 | 4+25i 25+4i | просте просте | 8 8 | 1323528−974400i 1323528+974400i | (4+25i)4 (25+4i)4 |
648 | 18+18i | −i·(1+i)3·32 | 48 | −1355172 | (18+18i)24 |
650 | 17+19i 19+17i 11+23i 23+11i 5+25i 25+5i | −(1+i)·(1+2i)2·(2+3i) −i·(1+i)·(2+i)2·(3+2i) −i·(1+i)·(2+i)2·(2+3i) −(1+i)·(1+2i)2·(3+2i) −i·(1+i)·(1+2i)·(2+i)·(3+2i) −(1+i)·(1+2i)·(2+i)·(2+3i) | 48 48 48 48 64 64 | −1204008−325728i −1204008+325728i −305448−1209312i −305448+1209312i 866592−881280i 866592+881280i | (17+19i)24 (19+17i)24 (11+23i)24 (23+11i)24 (5+25i)32 (25+5i)32 |
653 | 13+22i 22+13i | просте просте | 8 8 | −911832−1441440i −911832+1441440i | (13+22i)4 (22+13i)4 |
656 | 16+20i 20+16i | −(1+i)4·(4+5i) −(1+i)4·(5+4i) | 40 40 | −1244760−590400i −1244760+590400i | (16+20i)20 (20+16i)20 |
657 | 9+24i 24+9i | 3·(3+8i) 3·(8+3i) | 16 16 | 236816−1731840i 236816+1731840i | (9+24i)8 (24+9i)8 |
661 | 6+25i 25+6i | просте просте | 8 8 | 1027688−1413600i 1027688+1413600i | (6+25i)4 (25+6i)4 |
666 | 15+21i 21+15i | (1+i)·3·(6+i) −i·(1+i)·(1+6i)·3 | 32 32 | −1064688−826560i −1064688+826560i | (15+21i)16 (21+15i)16 |
673 | 12+23i 23+12i | просте просте | 8 8 | −625912−1700160i −625912+1700160i | (12+23i)4 (23+12i)4 |
674 | 7+25i 25+7i | (1+i)·(16+9i) −i·(1+i)·(9+16i) | 16 16 | 627816−1209600i 627816+1209600i | (7+25i)8 (25+7i)8 |
676 | 10+24i 24+10i 26 | −i·(1+i)2·(3+2i)2 −(1+i)2·(2+3i)2 −(1+i)2·(2+3i)·(3+2i) | 36 36 48 | −18564−1478880i −18564+1478880i 1472848 | (10+24i)18 −(24+10i)18 2624 |
677 | 1+26i 26+i | просте просте | 8 8 | 1811688−280800i 1811688+280800i | (1+26i)4 (26+i)4 |
680 | 14+22i 22+14i 2+26i 26+2i | −(1+i)3·(1+4i)·(2+i) −(1+i)3·(1+2i)·(4+i) −i·(1+i)3·(2+i)·(4+i) i·(1+i)3·(1+2i)·(1+4i) | 64 64 64 64 | −976752−1086912i −976752+1086912i 1373328−499392i 1373328+499392i | (14+22i)32 (22+14i)32 (2+26i)32 (26+2i)32 |
685 | 18+19i 19+18i 3+26i 26+3i | (2+i)·(11+4i) −i·(1+2i)·(4+11i) (1+2i)·(11+4i) −i·(2+i)·(4+11i) | 16 16 16 16 | −1852848−128448i −1852848+128448i 1695312−758592i 1695312+758592i | (18+19i)8 (19+18i)8 (3+26i)8 (26+3i)8 |
689 | 17+20i 20+17i 8+25i 25+8i | (3+2i)·(7+2i) −i·(2+3i)·(2+7i) (2+3i)·(7+2i) −i·(2+7i)·(3+2i) | 16 16 16 16 | −1795824−593280i −1795824+593280i 623376−1785600i 623376+1785600i | (17+20i)8 (20+17i)8 (8+25i)8 (25+8i)8 |
692 | 4+26i 26+4i | −i·(1+i)2·(2+13i) −i·(1+i)2·(13+2i) | 24 24 | 1275144−892320i 1275144+892320i | (4+26i)12 (26+4i)12 |
697 | 16+21i 21+16i 11+24i 24+11i | (4+i)·(5+4i) −i·(1+4i)·(4+5i) (4+i)·(4+5i) −i·(1+4i)·(5+4i) | 16 16 16 16 | −1674864−990720i −1674864+990720i −292464−1923840i −292464+1923840i | (16+21i)8 (21+16i)8 (11+24i)8 (24+11i)8 |
698 | 13+23i 23+13i | (1+i)·(18+5i) −i·(1+i)·(5+18i) | 16 16 | −684024−1291680i −684024+1291680i | (13+23i)8 (23+13i)8 |
701 | 5+26i 26+5i | просте просте | 8 8 | 1424808−1354080i 1424808+1354080i | (5+26i)4 (26+5i)4 |
706 | 9+25i 25+9i | (1+i)·(17+8i) −i·(1+i)·(8+17i) | 16 16 | 280296−1468800i 280296+1468800i | (9+25i)8 (25+9i)8 |
709 | 15+22i 22+15i | просте просте | 8 8 | −1474072−1367520i −1474072+1367520i | (15+22i)4 (22+15i)4 |
712 | 6+26i 26+6i | −i·(1+i)3·(8+5i) −(1+i)3·(5+8i) | 32 32 | 995112−1272960i 995112+1272960i | (6+26i)16 (26+6i)16 |
720 | 12+24i 24+12i | −(1+i)4·(1+2i)·3 −(1+i)4·(2+i)·3 | 80 80 | −403440−1613760i −403440+1613760i | (12+24i)40 (24+12i)40 |
722 | 19+19i | (1+i)·19 | 16 | −1563864 | (19+19i)8 |
724 | 18+20i 20+18i | −i·(1+i)2·(9+10i) −i·(1+i)2·(10+9i) | 24 24 | −1665976−355680i −1665976+355680i | (18+20i)12 (20+18i)12 |
725 | 14+23i 23+14i 10+25i 25+10i 7+26i 26+7i | −i·(1+2i)2·(5+2i) −i·(2+i)2·(2+5i) −i·(1+2i)·(2+i)·(2+5i) −i·(1+2i)·(2+i)·(5+2i) (2+i)2·(5+2i) −(1+2i)2·(2+5i) | 24 24 32 32 24 24 | −1137864−1738464i −1137864+1738464i 102816−2056320i 102816+2056320i 958776−1843296i 958776+1843296i | (14+23i)12 (23+14i)12 (10+25i)16 (25+10i)16 (7+26i)12 (26+7i)12 |
729 | 27 | 33 | 16 | 2152336 | 278 |
730 | 17+21i 21+17i 1+27i 27+i | −i·(1+i)·(2+i)·(3+8i) −i·(1+i)·(1+2i)·(8+3i) −i·(1+i)·(1+2i)·(3+8i) −i·(1+i)·(2+i)·(8+3i) | 32 32 32 32 | −1468656−588096i −1468656+588096i 1572624−172224i 1572624+172224i | (17+21i)16 (21+17i)16 (1+27i)16 (27+i)16 |
733 | 2+27i 27+2i | просте просте | 8 8 | 2055848−626400i 2055848+626400i | (2+27i)4 (27+2i)4 |
738 | 3+27i 27+3i | (1+i)·3·(5+4i) −i·(1+i)·3·(4+5i) | 32 32 | 1493712−708480i 1493712+708480i | (3+27i)16 (27+3i)16 |
740 | 16+22i 22+16i 8+26i 26+8i | −(1+i)2·(1+2i)·(1+6i) −i·(1+i)2·(2+i)·(6+i) −i·(1+i)2·(1+2i)·(6+i) −(1+i)2·(1+6i)·(2+i) | 48 48 48 48 | −1385904−1088256i −1385904+1088256i 710736−1612416i 710736+1612416i | (16+22i)24 (22+16i)24 (8+26i)24 (26+8i)24 |
745 | 13+24i 24+13i 4+27i 27+4i | (2+i)·(10+7i) −i·(1+2i)·(7+10i) (2+i)·(7+10i) −i·(1+2i)·(10+7i) | 16 16 16 16 | −962928−1974528i −962928+1974528i 1778832−1289088i 1778832+1289088i | (13+24i)8 (24+13i)8 (4+27i)8 (27+4i)8 |
746 | 11+25i 25+11i | (1+i)·(18+7i) −i·(1+i)·(7+18i) | 16 16 | −145464−1663200i −145464+1663200i | (11+25i)8 (25+11i)8 |
754 | 15+23i 23+15i 5+27i 27+5i | −i·(1+i)·(2+5i)·(3+2i) −i·(1+i)·(2+3i)·(5+2i) −i·(1+i)·(2+3i)·(2+5i) −i·(1+i)·(3+2i)·(5+2i) | 32 32 32 32 | −1150128−1249920i −1150128+1249920i 1269072−1128960i 1269072+1128960i | (15+23i)16 (23+15i)16 (5+27i)16 (27+5i)16 |
757 | 9+26i 26+9i | просте просте | 8 8 | 540008−2227680i 540008+2227680i | (9+26i)4 (26+9i)4 |
761 | 19+20i 20+19i | просте просте | 8 8 | −2304312−237120i −2304312+237120i | (19+20i)4 (20+19i)4 |
765 | 18+21i 21+18i 6+27i 27+6i | −i·(1+2i)·(1+4i)·3 (2+i)·3·(4+i) (1+2i)·3·(4+i) −i·(1+4i)·(2+i)·3 | 32 32 32 32 | −2208096−802944i −2208096+802944i 1570464−1747584i 1570464+1747584i | (18+21i)16 (21+18i)16 (6+27i)16 (27+6i)16 |
769 | 12+25i 25+12i | просте просте | 8 8 | −514552−2308800i −514552+2308800i | (12+25i)4 (25+12i)4 |
772 | 14+24i 24+14i | −i·(1+i)2·(7+12i) −i·(1+i)2·(12+7i) | 24 24 | −998296−1659840i −998296+1659840i | (14+24i)12 (24+14i)12 |
773 | 17+22i 22+17i | просте просте | 8 8 | −2085912−1166880i −2085912+1166880i | (17+22i)4 (22+17i)4 |
776 | 10+26i 26+10i | −i·(1+i)3·(9+4i) −(1+i)3·(4+9i) | 32 32 | 195432−1909440i 195432+1909440i | (10+26i)16 (26+10i)16 |
778 | 7+27i 27+7i | (1+i)·(17+10i) −i·(1+i)·(10+17i) | 16 16 | 958536−1542240i 958536+1542240i | (7+27i)8 (27+7i)8 |
784 | 28 | −(1+i)4·7 | 40 | 1969640 | 2820 |
785 | 16+23i 23+16i 1+28i 28+i | (2+i)·(11+6i) −i·(1+2i)·(6+11i) (2+i)·(6+11i) −i·(1+2i)·(11+6i) | 16 16 16 16 | −1909488−1517568i −1909488+1517568i 2398992−440448i 2398992+440448i | (16+23i)8 (23+16i)8 (1+28i)8 (28+i)8 |
788 | 2+28i 28+2i | −i·(1+i)2·(1+14i) −i·(1+i)2·(14+i) | 24 24 | 1936584−567840i 1936584+567840i | (2+28i)12 (28+2i)12 |
793 | 8+27i 27+8i 3+28i 28+3i | (3+2i)·(6+5i) −i·(2+3i)·(5+6i) (3+2i)·(5+6i) −i·(2+3i)·(6+5i) | 16 16 16 16 | 1008016−2292480i 1008016+2292480i 2275216−1046400i 2275216+1046400i | (8+27i)8 (27+8i)8 (3+28i)8 (28+3i)8 |
794 | 13+25i 25+13i | (1+i)·(19+6i) −i·(1+i)·(6+19i) | 16 16 | −643704−1778400i −643704+1778400i | (13+25i)8 (25+13i)8 |
797 | 11+26i 26+11i | просте просте | 8 8 | −76632−2539680i −76632+2539680i | (11+26i)4 (26+11i)4 |
800 | 20+20i 4+28i 28+4i | i·(1+i)5·(1+2i)·(2+i) i·(1+i)5·(1+2i)2 i·(1+i)5·(2+i)2 | 96 72 72 | −2004912 1746108−1022112i 1746108+1022112i | (20+20i)48 (4+28i)36 (28+4i)36 |
801 | 15+24i 24+15i | 3·(5+8i) 3·(8+5i) | 16 16 | −1599984−2046720i −1599984+2046720i | (15+24i)8 (24+15i)8 |
802 | 19+21i 21+19i | (1+i)·(20+i) −i·(1+i)·(1+20i) | 16 16 | −1891224−383040i −1891224+383040i | (19+21i)8 (21+19i)8 |
808 | 18+22i 22+18i | −i·(1+i)3·(10+i) −(1+i)3·(1+10i) | 32 32 | −1918008−807840i −1918008+807840i | (18+22i)16 (22+18i)16 |
809 | 5+28i 28+5i | просте просте | 8 8 | 1990728−1700160i 1990728+1700160i | (5+28i)4 (28+5i)4 |
810 | 9+27i 27+9i | (1+i)·(2+i)·32 −i·(1+i)·(1+2i)·32 | 48 48 | 478296−1913184i 478296+1913184i | (9+27i)24 (27+9i)24 |
818 | 17+23i 23+17i | (1+i)·(20+3i) −i·(1+i)·(3+20i) | 16 16 | −1661784−1126080i −1661784+1126080i | (17+23i)8 (23+17i)8 |
820 | 12+26i 26+12i 6+28i 28+6i | −i·(1+i)2·(2+i)·(5+4i) −(1+i)2·(1+2i)·(4+5i) −i·(1+i)2·(2+i)·(4+5i) −(1+i)2·(1+2i)·(5+4i) | 48 48 48 48 | −424944−2119104i −424944+2119104i 1372176−1669824i 1372176+1669824i | (12+26i)24 (26+12i)24 (6+28i)24 (28+6i)24 |
821 | 14+25i 25+14i | просте просте | 8 8 | −1223832−2402400i −1223832+2402400i | (14+25i)4 (25+14i)4 |
829 | 10+27i 27+10i | просте просте | 8 8 | 416168−2717280i 416168+2717280i | (10+27i)4 (27+10i)4 |
832 | 16+24i 24+16i | i·(1+i)6·(2+3i) i·(1+i)6·(3+2i) | 56 56 | −1546744−1572960i −1546744+1572960i | (16+24i)28 (24+16i)28 |
833 | 7+28i 28+7i | (1+4i)·7 (4+i)·7 | 16 16 | 1556496−2305920i 1556496+2305920i | (7+28i)8 (28+7i)8 |
841 | 20+21i 21+20i 29 | −i·(2+5i)2 (5+2i)2 −i·(2+5i)·(5+2i) | 12 12 16 | −2815508−278880i −2815508+278880i 2829456 | (20+21i)6 −(21+20i)6 298 |
842 | 1+29i 29+i | (1+i)·(15+14i) −i·(1+i)·(14+15i) | 16 16 | 2106696−292320i 2106696+292320i | (1+29i)8 (29+i)8 |
845 | 19+22i 22+19i 13+26i 26+13i 2+29i 29+2i | −i·(2+i)·(2+3i)2 −i·(1+2i)·(3+2i)2 −i·(1+2i)·(2+3i)·(3+2i) −i·(2+i)·(2+3i)·(3+2i) −i·(1+2i)·(2+3i)2 −i·(2+i)·(3+2i)2 | 24 24 32 32 24 24 | −2721672−716832i −2721672+716832i −679776−2719104i −679776+2719104i 2738808−648288i 2738808+648288i | (19+22i)12 (22+19i)12 (13+26i)16 (26+13i)16 (2+29i)12 (29+2i)12 |
848 | 8+28i 28+8i | −(1+i)4·(2+7i) −(1+i)4·(7+2i) | 40 40 | 1018440−2066400i 1018440+2066400i | (8+28i)20 (28+8i)20 |
850 | 15+25i 25+15i 11+27i 27+11i 3+29i 29+3i | −i·(1+i)·(1+2i)·(2+i)·(4+i) −(1+i)·(1+2i)·(1+4i)·(2+i) −(1+i)·(1+2i)2·(1+4i) −i·(1+i)·(2+i)2·(4+i) −i·(1+i)·(1+4i)·(2+i)2 −(1+i)·(1+2i)2·(4+i) | 64 64 48 48 48 48 | −1189728−1762560i −1189728+1762560i 137592−2141568i 137592+2141568i 1934712−928512i 1934712+928512i | (15+25i)32 (25+15i)32 (11+27i)24 (27+11i)24 (3+29i)24 (29+3i)24 |
853 | 18+23i 23+18i | просте просте | 8 8 | −2574232−1357920i −2574232+1357920i | (18+23i)4 (23+18i)4 |
857 | 4+29i 29+4i | просте просте | 8 8 | 2507208−1531200i 2507208+1531200i | (4+29i)4 (29+4i)4 |
865 | 17+24i 24+17i 9+28i 28+9i | −i·(1+2i)·(2+13i) (2+i)·(13+2i) (1+2i)·(13+2i) −i·(2+i)·(2+13i) | 16 16 16 16 | −2235888−1942272i −2235888+1942272i 1058832−2765952i 1058832+2765952i | (17+24i)8 (24+17i)8 (9+28i)8 (28+9i)8 |
866 | 5+29i 29+5i | (1+i)·(17+12i) −i·(1+i)·(12+17i) | 16 16 | 1745256−1419840i 1745256+1419840i | (5+29i)8 (29+5i)8 |
872 | 14+26i 26+14i | −i·(1+i)3·(10+3i) −(1+i)3·(3+10i) | 32 32 | −955128−2227680i −955128+2227680i | (14+26i)16 (26+14i)16 |
873 | 12+27i 27+12i | 3·(4+9i) 3·(9+4i) | 16 16 | −314224−3070080i −314224+3070080i | (12+27i)8 (27+12i)8 |
877 | 6+29i 29+6i | просте просте | 8 8 | 2107688−2241120i 2107688+2241120i | (6+29i)4 (29+6i)4 |
881 | 16+25i 25+16i | просте просте | 8 8 | −2015352−2361600i −2015352+2361600i | (16+25i)4 (25+16i)4 |
882 | 21+21i | (1+i)·3·7 | 32 | −2363568 | (21+21i)16 |
884 | 20+22i 22+20i 10+28i 28+10i | −i·(1+i)2·(3+2i)·(4+i) −(1+i)2·(1+4i)·(2+3i) −i·(1+i)2·(2+3i)·(4+i) −(1+i)2·(1+4i)·(3+2i) | 48 48 48 48 | −2491632−461760i −2491632+461760i 503568−2483520i 503568+2483520i | (20+22i)24 (22+20i)24 (10+28i)24 (28+10i)24 |
890 | 19+23i 23+19i 7+29i 29+7i | −i·(1+i)·(1+2i)·(8+5i) −i·(1+i)·(2+i)·(5+8i) −i·(1+i)·(1+2i)·(5+8i) −i·(1+i)·(2+i)·(8+5i) | 32 32 32 32 | −2148336−955584i −2148336+955584i 1445904−1854144i 1445904+1854144i | (19+23i)16 (23+19i)16 (7+29i)16 (29+7i)16 |
898 | 13+27i 27+13i | (1+i)·(20+7i) −i·(1+i)·(7+20i) | 16 16 | −537624−2358720i −537624+2358720i | (13+27i)8 (27+13i)8 |
900 | 18+24i 24+18i 30 | −i·(1+i)2·(2+i)2·3 −(1+i)2·(1+2i)2·3 −(1+i)2·(1+2i)·(2+i)·3 | 72 72 96 | −2272712−1330368i −2272712+1330368i 2609568 | (18+24i)36 (24+18i)36 3048 |
901 | 15+26i 26+15i 1+30i 30+i | −i·(1+4i)·(2+7i) (4+i)·(7+2i) (2+7i)·(4+i) −i·(1+4i)·(7+2i) | 16 16 16 16 | −1614384−2825280i −1614384+2825280i 3224016−440640i 3224016+440640i | (15+26i)8 (26+15i)8 (1+30i)8 (30+i)8 |
904 | 2+30i 30+2i | −i·(1+i)3·(8+7i) −(1+i)3·(7+8i) | 32 32 | 2512872−685440i 2512872+685440i | (2+30i)16 (30+2i)16 |
905 | 11+28i 28+11i 8+29i 29+8i | (2+i)·(10+9i) −i·(1+2i)·(9+10i) (2+i)·(9+10i) −i·(1+2i)·(10+9i) | 16 16 16 16 | 112272−3239808i 112272+3239808i 1425552−2911488i 1425552+2911488i | (11+28i)8 (28+11i)8 (8+29i)8 (29+8i)8 |
909 | 3+30i 30+3i | (1+10i)·3 3·(10+i) | 16 16 | 3083856−1298880i 3083856+1298880i | (3+30i)8 (30+3i)8 |
914 | 17+25i 25+17i | (1+i)·(21+4i) −i·(1+i)·(4+21i) | 16 16 | −1828824−1713600i −1828824+1713600i | (17+25i)8 (25+17i)8 |
916 | 4+30i 30+4i | −i·(1+i)2·(2+15i) −i·(1+i)2·(15+2i) | 24 24 | 2352584−1379040i 2352584+1379040i | (4+30i)12 (30+4i)12 |
922 | 9+29i 29+9i | (1+i)·(19+10i) −i·(1+i)·(10+19i) | 16 16 | 915336−2380320i 915336+2380320i | (9+29i)8 (29+9i)8 |
925 | 21+22i 22+21i 14+27i 27+14i 5+30i 30+5i | −i·(1+2i)2·(6+i) −i·(1+6i)·(2+i)2 (2+i)2·(6+i) −(1+2i)2·(1+6i) −i·(1+2i)·(1+6i)·(2+i) −i·(1+2i)·(2+i)·(6+i) | 24 24 24 24 32 32 | −3355144−440544i −3355144+440544i −1258504−3141216i −1258504+3141216i 2648736−2056320i 2648736+2056320i | (21+22i)12 (22+21i)12 (14+27i)12 (27+14i)12 (5+30i)16 (30+5i)16 |
928 | 12+28i 28+12i | −(1+i)5·(5+2i) i·(1+i)5·(2+5i) | 48 48 | −137592−2751840i −137592+2751840i | (12+28i)24 (28+12i)24 |
929 | 20+23i 23+20i | просте просте | 8 8 | −3319032−949440i −3319032+949440i | (20+23i)4 (23+20i)4 |
932 | 16+26i 26+16i | −i·(1+i)2·(8+13i) −i·(1+i)2·(13+8i) | 24 24 | −1676376−2271360i −1676376+2271360i | (16+26i)12 (26+16i)12 |
936 | 6+30i 30+6i | −i·(1+i)3·3·(3+2i) −(1+i)3·(2+3i)·3 | 64 64 | 1973904−2007360i 1973904+2007360i | (6+30i)32 (30+6i)32 |
937 | 19+24i 24+19i | просте просте | 8 8 | −3142072−1568640i −3142072+1568640i | (19+24i)4 (24+19i)4 |
941 | 10+29i 29+10i | просте просте | 8 8 | 850728−3438240i 850728+3438240i | (10+29i)4 (29+10i)4 |
949 | 18+25i 25+18i 7+30i 30+7i | (3+2i)·(8+3i) −i·(2+3i)·(3+8i) (2+3i)·(8+3i) −i·(3+2i)·(3+8i) | 16 16 16 16 | −2875184−2145600i −2875184+2145600i 2193616−2838720i 2193616+2838720i | (18+25i)8 (25+18i)8 (7+30i)8 (30+7i)8 |
953 | 13+28i 28+13i | просте просте | 8 8 | −607032−3581760i −607032+3581760i | (13+28i)4 (28+13i)4 |
954 | 15+27i 27+15i | (1+i)·3·(7+2i) −i·(1+i)·(2+7i)·3 | 32 32 | −1222128−2479680i −1222128+2479680i | (15+27i)16 (27+15i)16 |
961 | 31 | просте | 8 | 3694088 | 314 |
962 | 11+29i 29+11i 1+31i 31+i | −i·(1+i)·(1+6i)·(3+2i) −i·(1+i)·(2+3i)·(6+i) (1+i)·(3+2i)·(6+i) −(1+i)·(1+6i)·(2+3i) | 32 32 32 32 | 322512−2747520i 322512+2747520i 2741712−368640i 2741712+368640i | (11+29i)16 (29+11i)16 (1+31i)16 (31+i)16 |
964 | 8+30i 30+8i | −i·(1+i)2·(4+15i) −i·(1+i)2·(15+4i) | 24 24 | 1522664−2608320i 1522664+2608320i | (8+30i)12 (30+8i)12 |
965 | 17+26i 26+17i 2+31i 31+2i | (2+i)·(12+7i) −i·(1+2i)·(7+12i) (2+i)·(7+12i) −i·(1+2i)·(12+7i) | 16 16 16 16 | −2603568−2609088i −2603568+2609088i 3525072−1076928i 3525072+1076928i | (17+26i)8 (26+17i)8 (2+31i)8 (31+2i)8 |
968 | 22+22i | −i·(1+i)3·11 | 32 | −2986968 | (22+22i)16 |
970 | 21+23i 23+21i 3+31i 31+3i | −i·(1+i)·(2+i)·(4+9i) −i·(1+i)·(1+2i)·(9+4i) −i·(1+i)·(1+2i)·(4+9i) −i·(1+i)·(2+i)·(9+4i) | 32 32 32 32 | −2764656−398016i −2764656+398016i 2626704−949824i 2626704+949824i | (21+23i)16 (23+21i)16 (3+31i)16 (31+3i)16 |
976 | 20+24i 24+20i | −(1+i)4·(5+6i) −(1+i)4·(6+5i) | 40 40 | −2851960−1082400i −2851960+1082400i | (20+24i)20 (24+20i)20 |
977 | 4+31i 31+4i | просте просте | 8 8 | 3326088−1874880i 3326088+1874880i | (4+31i)4 (31+4i)4 |
980 | 14+28i 28+14i | −i·(1+i)2·(1+2i)·7 −i·(1+i)2·(2+i)·7 | 48 48 | −749424−2997696i −749424+2997696i | (14+28i)24 (28+14i)24 |
981 | 9+30i 30+9i | 3·(3+10i) 3·(10+3i) | 16 16 | 1535696−3581760i 1535696+3581760i | (9+30i)8 (30+9i)8 |
985 | 16+27i 27+16i 12+29i 29+12i | −i·(1+2i)·(1+14i) (2+i)·(14+i) (1+2i)·(14+i) −i·(1+14i)·(2+i) | 16 16 16 16 | −1942128−3313152i −1942128+3313152i 154512−3837312i 154512+3837312i | (16+27i)8 (27+16i)8 (12+29i)8 (29+12i)8 |
986 | 19+25i 25+19i 5+31i 31+5i | −i·(1+i)·(1+4i)·(5+2i) −i·(1+i)·(2+5i)·(4+i) (1+i)·(4+i)·(5+2i) −(1+i)·(1+4i)·(2+5i) | 32 32 32 32 | −2500848−1512000i −2500848+1512000i 2337552−1753920i 2337552+1753920i | (19+25i)16 (25+19i)16 (5+31i)16 (31+5i)16 |
997 | 6+31i 31+6i | просте просте | 8 8 | 2868968−2752800i 2868968+2752800i | (6+31i)4 (31+6i)4 |
1000 | 18+26i 26+18i 10+30i 30+10i | i·(1+i)3·(1+2i)3 −(1+i)3·(2+i)3 −(1+i)3·(1+2i)·(2+i)2 i·(1+i)3·(1+2i)2·(2+i) | 64 64 96 96 | −2288880−2164032i −2288880+2164032i 875160−2991456i 875160+2991456i | (18+26i)32 (26+18i)32 (10+30i)48 (30+10i)48 |
Див. також
Примітки
- Hardy, G. H.; Wright, E. M. (1968). An introduction to the theory of numbers (Англійською мовою) . Oxford University Press. с. 182—183.
Література
- Hardy, G. H.; Wright, E. M. (1968). An introduction to the theory of numbers (вид. 4th).
- Stillwell, John (2003). Elements of Number Theory (вид. 4). Science+Business Media New York. ISBN .
- Willerging M. F. Divisibility and factorization of Gaussian integers // The Mathematics Teacher. — 1966. — Т. 59, вип. 7. — С. 634-637.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Kazhut sho gausove chislo a displaystyle alpha dilitsya na nenulove gausove chislo b displaystyle beta yaksho isnuye take gausove chislo g displaystyle gamma dlya yakogo a b g displaystyle alpha beta gamma Na diagrami tochkami vidmicheno gausovi chisla Kolir tochki sho poznachaye pevne chislo vidpovidaye kilkosti dilnikiv cogo chisla Vidnoshennya podilnosti poznachayetsya takim chinom b a displaystyle beta alpha Pri comu chislo b displaystyle beta nazivayut dilnikom chisla a displaystyle alpha Gausove chislo r displaystyle rho nazivayut prostim yaksho vono ne ye dilnikom odinici i maye rivno 8 dilnikiv 1 i r i r displaystyle pm 1 pm i pm rho pm i rho Cya stattya mistit tablicyu v yakij navedeno kilkist sumu 4 tih stepeniv ta dobutok usih dilnikiv dlya gausovih chisel z normoyu sho ne perevishuye 1000 Poznachennya v tablicit a d a 1 displaystyle tau alpha sum delta alpha 1 ce kilkist dilnikiv nenulovogo gausovogo chisla a displaystyle alpha s 4 a d a d 4 displaystyle sigma 4 alpha sum delta alpha delta 4 ce suma 4 tih stepeniv usih dilnikiv nenulovogo gausovogo chisla a displaystyle alpha p a d a d displaystyle pi alpha prod delta alpha delta ce dobutok usih dilnikiv nenulovogo gausovogo chisla a displaystyle alpha Primitka Oskilki u asocijovanih gausovih chisel mnozhini dilnikiv ye rivnimi to v tablici budut vkazani lishe gausovi chisla z pershoyi koordinatnoyi chverti Yaksho d displaystyle delta dilnik gausovogo chisla a displaystyle alpha to d i d displaystyle delta i delta ta i d displaystyle i delta tezh ye dilnikami chisla a displaystyle alpha Zvidsi viplivaye sho dlya bud yakogo naturalnogo m displaystyle m ne kratnogo 4 suma m displaystyle m tih stepeniv usih dilnikiv chisla a displaystyle alpha dorivnyuye 0 Tomu v cij tablici rozglyadayetsya same suma 4 tih stepeniv usih dilnikiv nenulovogo gausovogo chisla Tablicya dilnikivNorma Chislo Rozklad t displaystyle tau s 4 displaystyle sigma 4 p displaystyle pi 2 1 i proste 8 12 1 i 4 4 2 i 1 i 2 12 52 26 5 1 2i 2 i proste proste 8 8 24 96i 24 96i 1 2i 4 2 i 4 8 2 2i i 1 i 3 16 204 2 2i 8 9 3 proste 8 328 34 10 1 3i 3 i 1 i 2 i i 1 i 1 2i 16 16 72 288i 72 288i 1 3i 8 3 i 8 13 2 3i 3 2i proste proste 8 8 472 480i 472 480i 2 3i 4 3 2i 4 16 4 1 i 4 20 820 410 17 1 4i 4 i proste proste 8 8 648 960i 648 960i 1 4i 4 4 i 4 18 3 3i 1 i 3 16 984 3 3i 8 20 2 4i 4 2i i 1 i 2 1 2i i 1 i 2 2 i 24 24 312 1248i 312 1248i 2 4i 12 4 2i 12 25 3 4i 4 3i 5 2 i 2 i 1 2i 2 i 1 2i 2 i 12 12 16 2132 1248i 2132 1248i 2448 3 4i 6 4 3i 6 58 26 1 5i 5 i 1 i 3 2i i 1 i 2 3i 16 16 1416 1440i 1416 1440i 1 5i 8 5 i 8 29 2 5i 5 2i proste proste 8 8 168 3360i 168 3360i 2 5i 4 5 2i 4 32 4 4i 1 i 5 24 3276 4 4i 12 34 3 5i 5 3i 1 i 4 i i 1 i 1 4i 16 16 1944 2880i 1944 2880i 3 5i 8 5 3i 8 36 6 i 1 i 2 3 24 4264 612 37 1 6i 6 i proste proste 8 8 4328 3360i 4328 3360i 1 6i 4 6 i 4 40 2 6i 6 2i i 1 i 3 2 i 1 i 3 1 2i 32 32 1224 4896i 1224 4896i 2 6i 16 6 2i 16 41 4 5i 5 4i proste proste 8 8 6072 2880i 6072 2880i 4 5i 4 5 4i 4 45 3 6i 6 3i 1 2i 3 2 i 3 16 16 1968 7872i 1968 7872i 3 6i 8 6 3i 8 49 7 proste 8 9608 74 50 5 5i 1 7i 7 i i 1 i 1 2i 2 i i 1 i 1 2i 2 i 1 i 2 i 2 32 24 24 7344 6396 3744i 6396 3744i 5 5i 16 1 7i 12 7 i 12 52 4 6i 6 4i i 1 i 2 2 3i i 1 i 2 3 2i 24 24 6136 6240i 6136 6240i 4 6i 12 6 4i 12 53 2 7i 7 2i proste proste 8 8 4968 10080i 4968 10080i 2 7i 4 7 2i 4 58 3 7i 7 3i 1 i 5 2i i 1 i 2 5i 16 16 504 10080i 504 10080i 3 7i 8 7 3i 8 61 5 6i 6 5i proste proste 8 8 13912 5280i 13912 5280i 5 6i 4 6 5i 4 64 8 i 1 i 6 28 13108 814 65 4 7i 7 4i 1 8i 8 i 2 i 3 2i i 1 2i 2 3i 2 i 2 3i i 1 2i 3 2i 16 16 16 16 8688 14208i 8688 14208i 14352 8448i 14352 8448i 4 7i 8 7 4i 8 1 8i 8 8 i 8 68 2 8i 8 2i i 1 i 2 1 4i i 1 i 2 4 i 24 24 8424 12480i 8424 12480i 2 8i 12 8 2i 12 72 6 6i i 1 i 3 3 32 16728 6 6i 16 73 3 8i 8 3i proste proste 8 8 2888 21120i 2888 21120i 3 8i 4 8 3i 4 74 5 7i 7 5i 1 i 6 i i 1 i 1 6i 16 16 12984 10080i 12984 10080i 5 7i 8 7 5i 8 80 4 8i 8 4i 1 i 4 1 2i 1 i 4 2 i 40 40 4920 19680i 4920 19680i 4 8i 20 8 4i 20 81 9 32 12 26572 96 82 1 9i 9 i 1 i 5 4i i 1 i 4 5i 16 16 18216 8640i 18216 8640i 1 9i 8 9 i 8 85 6 7i 7 6i 2 9i 9 2i i 1 2i 1 4i 2 i 4 i 1 2i 4 i i 1 4i 2 i 16 16 16 16 26928 9792i 26928 9792i 19152 21312i 19152 21312i 6 7i 8 7 6i 8 2 9i 8 9 2i 8 89 5 8i 8 5i proste proste 8 8 19512 24960i 19512 24960i 5 8i 4 8 5i 4 90 3 9i 9 3i 1 i 2 i 3 i 1 i 1 2i 3 32 32 5904 23616i 5904 23616i 3 9i 16 9 3i 16 97 4 9i 9 4i proste proste 8 8 3832 37440i 3832 37440i 4 9i 4 9 4i 4 98 7 7i 1 i 7 16 28824 7 7i 8 100 6 8i 8 6i 10 i 1 i 2 2 i 2 1 i 2 1 2i 2 1 i 2 1 2i 2 i 36 36 48 27716 16224i 27716 16224i 31824 6 8i 18 8 6i 18 1024 101 1 10i 10 i proste proste 8 8 37608 15840i 37608 15840i 1 10i 4 10 i 4 104 2 10i 10 2i i 1 i 3 3 2i 1 i 3 2 3i 32 32 24072 24480i 24072 24480i 2 10i 16 10 2i 16 106 5 9i 9 5i 1 i 7 2i i 1 i 2 7i 16 16 14904 30240i 14904 30240i 5 9i 8 9 5i 8 109 3 10i 10 3i proste proste 8 8 18728 43680i 18728 43680i 3 10i 4 10 3i 4 113 7 8i 8 7i proste proste 8 8 49272 13440i 49272 13440i 7 8i 4 8 7i 4 116 4 10i 10 4i i 1 i 2 2 5i i 1 i 2 5 2i 24 24 2184 43680i 2184 43680i 4 10i 12 10 4i 12 117 6 9i 9 6i 2 3i 3 3 3 2i 16 16 38704 39360i 38704 39360i 6 9i 8 9 6i 8 121 11 proste 8 58568 114 122 1 11i 11 i 1 i 6 5i i 1 i 5 6i 16 16 41736 15840i 41736 15840i 1 11i 8 11 i 8 125 5 10i 10 5i 2 11i 11 2i i 1 2i 2 2 i i 1 2i 2 i 2 2 i 3 1 2i 3 24 24 16 16 17160 58656i 17160 58656i 44880 42432i 44880 42432i 5 10i 12 10 5i 12 2 11i 8 11 2i 8 128 8 8i i 1 i 7 32 52428 8 8i 16 130 7 9i 9 7i 3 11i 11 3i i 1 i 1 2i 3 2i i 1 i 2 i 2 3i i 1 i 1 2i 2 3i i 1 i 2 i 3 2i 32 32 32 32 43056 25344i 43056 25344i 26064 42624i 26064 42624i 7 9i 16 9 7i 16 3 11i 16 11 3i 16 136 6 10i 10 6i i 1 i 3 4 i 1 i 3 1 4i 32 32 33048 48960i 33048 48960i 6 10i 16 10 6i 16 137 4 11i 11 4i proste proste 8 8 13128 73920i 13128 73920i 4 11i 4 11 4i 4 144 12 1 i 4 3 40 67240 1220 145 8 9i 9 8i 1 12i 12 i 2 i 5 2i i 1 2i 2 5i 1 2i 5 2i i 2 i 2 5i 16 16 16 16 81648 16128i 81648 16128i 79632 24192i 79632 24192i 8 9i 8 9 8i 8 1 12i 8 12 i 8 146 5 11i 11 5i 1 i 8 3i i 1 i 3 8i 16 16 8664 63360i 8664 63360i 5 11i 8 11 5i 8 148 2 12i 12 2i i 1 i 2 1 6i i 1 i 2 6 i 24 24 56264 43680i 56264 43680i 2 12i 12 12 2i 12 149 7 10i 10 7i proste proste 8 8 67992 57120i 67992 57120i 7 10i 4 10 7i 4 153 3 12i 12 3i 1 4i 3 3 4 i 16 16 53136 78720i 53136 78720i 3 12i 8 12 3i 8 157 6 11i 11 6i proste proste 8 8 40792 89760i 40792 89760i 6 11i 4 11 6i 4 160 4 12i 12 4i 1 i 5 2 i i 1 i 5 1 2i 48 48 19656 78624i 19656 78624i 4 12i 24 12 4i 24 162 9 9i 1 i 32 24 79716 9 9i 12 164 8 10i 10 8i i 1 i 2 4 5i i 1 i 2 5 4i 24 24 78936 37440i 78936 37440i 8 10i 12 10 8i 12 169 5 12i 12 5i 13 3 2i 2 i 2 3i 2 i 2 3i 3 2i 12 12 16 1428 113760i 1428 113760i 113296 5 12i 6 12 5i 6 138 170 7 11i 11 7i 1 13i 13 i i 1 i 1 4i 2 i i 1 i 1 2i 4 i 1 i 2 i 4 i 1 i 1 2i 1 4i 32 32 32 32 57456 63936i 57456 63936i 80784 29376i 80784 29376i 7 11i 16 11 7i 16 1 13i 16 13 i 16 173 2 13i 13 2i proste proste 8 8 98088 68640i 98088 68640i 2 13i 4 13 2i 4 178 3 13i 13 3i 1 i 8 5i i 1 i 5 8i 16 16 58536 74880i 58536 74880i 3 13i 8 13 3i 8 180 6 12i 12 6i i 1 i 2 1 2i 3 i 1 i 2 2 i 3 48 48 25584 102336i 25584 102336i 6 12i 24 12 6i 24 181 9 10i 10 9i proste proste 8 8 128152 27360i 128152 27360i 9 10i 4 10 9i 4 185 8 11i 11 8i 4 13i 13 4i i 1 2i 1 6i 2 i 6 i 1 2i 6 i i 1 6i 2 i 16 16 16 16 106608 83712i 106608 83712i 54672 124032i 54672 124032i 8 11i 8 11 8i 8 4 13i 8 13 4i 8 193 7 12i 12 7i proste proste 8 8 76792 127680i 76792 127680i 7 12i 4 12 7i 4 194 5 13i 13 5i 1 i 9 4i i 1 i 4 9i 16 16 11496 112320i 11496 112320i 5 13i 8 13 5i 8 196 14 i 1 i 2 7 24 124904 1412 197 1 14i 14 i proste proste 8 8 148968 43680i 148968 43680i 1 14i 4 14 i 4 200 10 10i 2 14i 14 2i 1 i 3 1 2i 2 i 1 i 3 1 2i 2 1 i 3 2 i 2 64 48 48 124848 108732 63648i 108732 63648i 10 10i 32 2 14i 24 14 2i 24 202 9 11i 11 9i 1 i 10 i i 1 i 1 10i 16 16 112824 47520i 112824 47520i 9 11i 8 11 9i 8 205 6 13i 13 6i 3 14i 14 3i 2 i 5 4i i 1 2i 4 5i 2 i 4 5i i 1 2i 5 4i 16 16 16 16 32688 163008i 32688 163008i 105552 128448i 105552 128448i 6 13i 8 13 6i 8 3 14i 8 14 3i 8 208 8 12i 12 8i 1 i 4 2 3i 1 i 4 3 2i 40 40 96760 98400i 96760 98400i 8 12i 20 12 8i 20 212 4 14i 14 4i i 1 i 2 2 7i i 1 i 2 7 2i 24 24 64584 131040i 64584 131040i 4 14i 12 14 4i 12 218 7 13i 13 7i 1 i 10 3i i 1 i 3 10i 16 16 56184 131040i 56184 131040i 7 13i 8 13 7i 8 221 10 11i 11 10i 5 14i 14 5i 3 2i 4 i i 1 4i 2 3i 2 3i 4 i i 1 4i 3 2i 16 16 16 16 191664 35520i 191664 35520i 38736 191040i 38736 191040i 10 11i 8 11 10i 8 5 14i 8 14 5i 8 225 9 12i 12 9i 15 2 i 2 3 i 1 2i 2 3 i 1 2i 2 i 3 24 24 32 174824 102336i 174824 102336i 200736 9 12i 12 12 9i 12 1516 226 1 15i 15 i 1 i 8 7i i 1 i 7 8i 16 16 147816 40320i 147816 40320i 1 15i 8 15 i 8 229 2 15i 15 2i proste proste 8 8 180968 106080i 180968 106080i 2 15i 4 15 2i 4 232 6 14i 14 6i i 1 i 3 5 2i 1 i 3 2 5i 32 32 8568 171360i 8568 171360i 6 14i 16 14 6i 16 233 8 13i 13 8i proste proste 8 8 128952 174720i 128952 174720i 8 13i 4 13 8i 4 234 3 15i 15 3i 1 i 3 3 2i i 1 i 2 3i 3 32 32 116112 118080i 116112 118080i 3 15i 16 15 3i 16 241 4 15i 15 4i proste proste 8 8 117128 200640i 117128 200640i 4 15i 4 15 4i 4 242 11 11i 1 i 11 16 175704 11 11i 8 244 10 12i 12 10i i 1 i 2 5 6i i 1 i 2 6 5i 24 24 180856 68640i 180856 68640i 10 12i 12 12 10i 12 245 7 14i 14 7i 1 2i 7 2 i 7 16 16 57648 230592i 57648 230592i 7 14i 8 14 7i 8 250 9 13i 13 9i 5 15i 15 5i 1 i 1 2i 3 i 1 i 2 i 3 i 1 i 1 2i 2 i 2 1 i 1 2i 2 2 i 32 32 48 48 134640 127296i 134640 127296i 51480 175968i 51480 175968i 9 13i 16 13 9i 16 5 15i 24 15 5i 24 256 16 1 i 8 36 209716 1618 257 1 16i 16 i proste proste 8 8 256008 65280i 256008 65280i 1 16i 4 16 i 4 260 8 14i 14 8i 2 16i 16 2i i 1 i 2 2 i 3 2i 1 i 2 1 2i 2 3i i 1 i 2 2 i 2 3i 1 i 2 1 2i 3 2i 48 48 48 48 112944 184704i 112944 184704i 186576 109824i 186576 109824i 8 14i 24 14 8i 24 2 16i 24 16 2i 24 261 6 15i 15 6i 2 5i 3 3 5 2i 16 16 13776 275520i 13776 275520i 6 15i 8 15 6i 8 265 11 12i 12 11i 3 16i 16 3i i 1 2i 2 7i 2 i 7 2i 1 2i 7 2i i 2 i 2 7i 16 16 16 16 271728 58752i 271728 58752i 212112 179712i 212112 179712i 11 12i 8 12 11i 8 3 16i 8 16 3i 8 269 10 13i 13 10i proste proste 8 8 251352 143520i 251352 143520i 10 13i 4 13 10i 4 272 4 16i 16 4i 1 i 4 1 4i 1 i 4 4 i 40 40 132840 196800i 132840 196800i 4 16i 20 16 4i 20 274 7 15i 15 7i 1 i 11 4i i 1 i 4 11i 16 16 39384 221760i 39384 221760i 7 15i 8 15 7i 8 277 9 14i 14 9i proste proste 8 8 201112 231840i 201112 231840i 9 14i 4 14 9i 4 281 5 16i 16 5i proste proste 8 8 111048 295680i 111048 295680i 5 16i 4 16 5i 4 288 12 12i 1 i 5 3 48 268632 12 12i 24 289 8 15i 15 8i 17 i 1 4i 2 4 i 2 i 1 4i 4 i 12 12 16 126068 310080i 126068 310080i 335376 8 15i 6 15 8i 6 178 290 11 13i 13 11i 1 17i 17 i i 1 i 2 i 2 5i i 1 i 1 2i 5 2i i 1 i 1 2i 2 5i i 1 i 2 i 5 2i 32 32 32 32 238896 72576i 238896 72576i 244944 48384i 244944 48384i 11 13i 16 13 11i 16 1 17i 16 17 i 16 292 6 16i 16 6i i 1 i 2 3 8i i 1 i 2 8 3i 24 24 37544 274560i 37544 274560i 6 16i 12 16 6i 12 293 2 17i 17 2i proste proste 8 8 306408 155040i 306408 155040i 2 17i 4 17 2i 4 296 10 14i 14 10i i 1 i 3 6 i 1 i 3 1 6i 32 32 220728 171360i 220728 171360i 10 14i 16 14 10i 16 298 3 17i 17 3i 1 i 10 7i i 1 i 7 10i 16 16 203976 171360i 203976 171360i 3 17i 8 17 3i 8 305 7 16i 16 7i 4 17i 17 4i 2 i 6 5i i 1 2i 5 6i 2 i 5 6i i 1 2i 6 5i 16 16 16 16 43248 365568i 43248 365568i 210192 302208i 210192 302208i 7 16i 8 16 7i 8 4 17i 8 17 4i 8 306 9 15i 15 9i 1 i 3 4 i i 1 i 1 4i 3 32 32 159408 236160i 159408 236160i 9 15i 16 15 9i 16 313 12 13i 13 12i proste proste 8 8 386872 62400i 386872 62400i 12 13i 4 13 12i 4 314 5 17i 17 5i 1 i 11 6i i 1 i 6 11i 16 16 122376 269280i 122376 269280i 5 17i 8 17 5i 8 317 11 14i 14 11i proste proste 8 8 356952 184800i 356952 184800i 11 14i 4 14 11i 4 320 8 16i 16 8i i 1 i 6 1 2i i 1 i 6 2 i 56 56 78648 314592i 78648 314592i 8 16i 28 16 8i 28 324 18 i 1 i 2 32 36 345436 1818 325 10 15i 15 10i 6 17i 17 6i 1 18i 18 i i 1 2i 2 i 2 3i i 1 2i 2 i 3 2i i 1 2i 2 3 2i i 2 i 2 2 3i 2 i 2 3 2i 1 2i 2 2 3i 32 32 24 24 24 24 288864 293760i 288864 293760i 101816 403104i 101816 403104i 401336 108576i 401336 108576i 10 15i 16 15 10i 16 6 17i 12 17 6i 12 1 18i 12 18 i 12 328 2 18i 18 2i i 1 i 3 5 4i 1 i 3 4 5i 32 32 309672 146880i 309672 146880i 2 18i 16 18 2i 16 333 3 18i 18 3i 1 6i 3 3 6 i 16 16 354896 275520i 354896 275520i 3 18i 8 18 3i 8 337 9 16i 16 9i proste proste 8 8 209272 403200i 209272 403200i 9 16i 4 16 9i 4 338 13 13i 7 17i 17 7i i 1 i 2 3i 3 2i i 1 i 2 3i 2 i 1 i 3 2i 2 32 24 24 339888 4284 341280i 4284 341280i 13 13i 16 7 17i 12 17 7i 12 340 12 14i 14 12i 4 18i 18 4i 1 i 2 1 2i 1 4i i 1 i 2 2 i 4 i i 1 i 2 1 2i 4 i 1 i 2 1 4i 2 i 48 48 48 48 350064 127296i 350064 127296i 248976 277056i 248976 277056i 12 14i 24 14 12i 24 4 18i 24 18 4i 24 346 11 15i 15 11i 1 i 13 2i i 1 i 2 13i 16 16 294264 205920i 294264 205920i 11 15i 8 15 11i 8 349 5 18i 18 5i proste proste 8 8 228008 430560i 228008 430560i 5 18i 4 18 5i 4 353 8 17i 17 8i proste proste 8 8 93432 489600i 93432 489600i 8 17i 4 17 8i 4 356 10 16i 16 10i i 1 i 2 5 8i i 1 i 2 8 5i 24 24 253656 324480i 253656 324480i 10 16i 12 16 10i 12 360 6 18i 18 6i i 1 i 3 2 i 3 1 i 3 1 2i 3 64 64 100368 401472i 100368 401472i 6 18i 32 18 6i 32 361 19 proste 8 521288 194 362 1 19i 19 i 1 i 10 9i i 1 i 9 10i 16 16 384456 82080i 384456 82080i 1 19i 8 19 i 8 365 13 14i 14 13i 2 19i 19 2i 2 i 8 3i i 1 2i 3 8i 1 2i 8 3i i 2 i 3 8i 16 16 16 16 524208 57408i 524208 57408i 489552 196032i 489552 196032i 13 14i 8 14 13i 8 2 19i 8 19 2i 8 369 12 15i 15 12i 3 4 5i 3 5 4i 16 16 497904 236160i 497904 236160i 12 15i 8 15 12i 8 370 9 17i 17 9i 3 19i 19 3i i 1 i 1 6i 2 i i 1 i 1 2i 6 i 1 i 2 i 6 i 1 i 1 2i 1 6i 32 32 32 32 164016 372096i 164016 372096i 319824 251136i 319824 251136i 9 17i 16 17 9i 16 3 19i 16 19 3i 16 373 7 18i 18 7i proste proste 8 8 48488 554400i 48488 554400i 7 18i 4 18 7i 4 377 11 16i 16 11i 4 19i 19 4i 3 2i 5 2i i 2 3i 2 5i 2 3i 5 2i i 2 5i 3 2i 16 16 16 16 423024 376320i 423024 376320i 383376 416640i 383376 416640i 11 16i 8 16 11i 8 4 19i 8 19 4i 8 386 5 19i 19 5i 1 i 12 7i i 1 i 7 12i 16 16 230376 383040i 230376 383040i 5 19i 8 19 5i 8 388 8 18i 18 8i i 1 i 2 4 9i i 1 i 2 9 4i 24 24 49816 486720i 49816 486720i 8 18i 12 18 8i 12 389 10 17i 17 10i proste proste 8 8 319512 514080i 319512 514080i 10 17i 4 17 10i 4 392 14 14i i 1 i 3 7 32 490008 14 14i 16 394 13 15i 15 13i 1 i 14 i i 1 i 1 14i 16 16 446904 131040i 446904 131040i 13 15i 8 15 13i 8 397 6 19i 19 6i proste proste 8 8 214568 592800i 214568 592800i 6 19i 4 19 6i 4 400 12 16i 16 12i 20 1 i 4 2 i 2 i 1 i 4 1 2i 2 i 1 i 4 1 2i 2 i 60 60 80 437060 255840i 437060 255840i 501840 12 16i 30 16 12i 30 2040 401 1 20i 20 i proste proste 8 8 630408 127680i 630408 127680i 1 20i 4 20 i 4 404 2 20i 20 2i i 1 i 2 1 10i i 1 i 2 10 i 24 24 488904 205920i 488904 205920i 2 20i 12 20 2i 12 405 9 18i 18 9i 1 2i 32 2 i 32 24 24 159432 637728i 159432 637728i 9 18i 12 18 9i 12 409 3 20i 20 3i proste proste 8 8 553928 375360i 553928 375360i 3 20i 4 20 3i 4 410 11 17i 17 11i 7 19i 19 7i i 1 i 1 2i 5 4i i 1 i 2 i 4 5i i 1 i 1 2i 4 5i i 1 i 2 i 5 4i 32 32 32 32 316656 385344i 316656 385344i 98064 489024i 98064 489024i 11 17i 16 17 11i 16 7 19i 16 19 7i 16 416 4 20i 20 4i 1 i 5 3 2i i 1 i 5 2 3i 48 48 386568 393120i 386568 393120i 4 20i 24 20 4i 24 421 14 15i 15 14i proste proste 8 8 702232 97440i 702232 97440i 14 15i 4 15 14i 4 424 10 18i 18 10i i 1 i 3 7 2i 1 i 3 2 7i 32 32 253368 514080i 253368 514080i 10 18i 16 18 10i 16 425 13 16i 16 13i 8 19i 19 8i 5 20i 20 5i i 1 2i 2 4 i i 1 4i 2 i 2 2 i 2 4 i 1 2i 2 1 4i i 1 2i 1 4i 2 i i 1 2i 2 i 4 i 24 24 24 24 32 32 644904 309504i 644904 309504i 45864 713856i 45864 713856i 396576 587520i 396576 587520i 13 16i 12 16 13i 12 8 19i 12 19 8i 12 5 20i 16 20 5i 16 433 12 17i 17 12i proste proste 8 8 581752 473280i 581752 473280i 12 17i 4 17 12i 4 436 6 20i 20 6i i 1 i 2 3 10i i 1 i 2 10 3i 24 24 243464 567840i 243464 567840i 6 20i 12 20 6i 12 441 21 3 7 16 787856 218 442 9 19i 19 9i 1 21i 21 i i 1 i 1 4i 3 2i i 1 i 2 3i 4 i i 1 i 1 4i 2 3i i 1 i 3 2i 4 i 32 32 32 32 116208 573120i 116208 573120i 574992 106560i 574992 106560i 9 19i 16 19 9i 16 1 21i 16 21 i 16 445 11 18i 18 11i 2 21i 21 2i 2 i 8 5i i 1 2i 5 8i 2 i 5 8i i 1 2i 8 5i 16 16 16 16 481968 618048i 481968 618048i 716112 318528i 716112 318528i 11 18i 8 18 11i 8 2 21i 8 21 2i 8 449 7 20i 20 7i proste proste 8 8 179208 786240i 179208 786240i 7 20i 4 20 7i 4 450 15 15i 3 21i 21 3i i 1 i 1 2i 2 i 3 i 1 i 1 2i 2 3 i 1 i 2 i 2 3 64 48 48 602208 524472 307008i 524472 307008i 15 15i 32 3 21i 24 21 3i 24 452 14 16i 16 14i i 1 i 2 7 8i i 1 i 2 8 7i 24 24 640536 174720i 640536 174720i 14 16i 12 16 14i 12 457 4 21i 21 4i proste proste 8 8 609608 571200i 609608 571200i 4 21i 4 21 4i 4 458 13 17i 17 13i 1 i 15 2i i 1 i 2 15i 16 16 542904 318240i 542904 318240i 13 17i 8 17 13i 8 461 10 19i 19 10i proste proste 8 8 305112 793440i 305112 793440i 10 19i 4 19 10i 4 464 8 20i 20 8i 1 i 4 2 5i 1 i 4 5 2i 40 40 34440 688800i 34440 688800i 8 20i 20 20 8i 20 466 5 21i 21 5i 1 i 13 8i i 1 i 8 13i 16 16 386856 524160i 386856 524160i 5 21i 8 21 5i 8 468 12 18i 18 12i i 1 i 2 2 3i 3 i 1 i 2 3 3 2i 48 48 503152 511680i 503152 511680i 12 18i 24 18 12i 24 477 6 21i 21 6i 2 7i 3 3 7 2i 16 16 407376 826560i 407376 826560i 6 21i 8 21 6i 8 481 15 16i 16 15i 9 20i 20 9i i 1 6i 2 3i 3 2i 6 i 2 3i 6 i i 1 6i 3 2i 16 16 16 16 913904 122880i 913904 122880i 107504 915840i 107504 915840i 15 16i 8 16 15i 8 9 20i 8 20 9i 8 482 11 19i 19 11i 1 i 15 4i i 1 i 4 15i 16 16 351384 601920i 351384 601920i 11 19i 8 19 11i 8 484 22 i 1 i 2 11 24 761384 2212 485 14 17i 17 14i 1 22i 22 i 2 i 9 4i i 1 2i 4 9i 1 2i 9 4i i 2 i 4 9i 16 16 16 16 875568 316608i 875568 316608i 921552 132672i 921552 132672i 14 17i 8 17 14i 8 1 22i 8 22 i 8 488 2 22i 22 2i i 1 i 3 6 5i 1 i 3 5 6i 32 32 709512 269280i 709512 269280i 2 22i 16 22 2i 16 490 7 21i 21 7i 1 i 2 i 7 i 1 i 1 2i 7 32 32 172944 691776i 172944 691776i 7 21i 16 21 7i 16 493 13 18i 18 13i 3 22i 22 3i i 1 4i 2 5i 4 i 5 2i 2 5i 4 i i 1 4i 5 2i 16 16 16 16 779184 584640i 779184 584640i 833616 504000i 833616 504000i 13 18i 8 18 13i 8 3 22i 8 22 3i 8 500 10 20i 20 10i 4 22i 22 4i 1 i 2 1 2i 2 2 i 1 i 2 1 2i 2 i 2 i 1 i 2 2 i 3 i 1 i 2 1 2i 3 72 72 48 48 223080 762528i 223080 762528i 583440 551616i 583440 551616i 10 20i 36 20 10i 36 4 22i 24 22 4i 24 505 12 19i 19 12i 8 21i 21 8i i 1 2i 1 10i 2 i 10 i 1 2i 10 i i 1 10i 2 i 16 16 16 16 605808 807552i 605808 807552i 154512 997632i 154512 997632i 12 19i 8 19 12i 8 8 21i 8 21 8i 8 509 5 22i 22 5i proste proste 8 8 649128 807840i 649128 807840i 5 22i 4 22 5i 4 512 16 16i 1 i 9 40 838860 16 16i 20 514 15 17i 17 15i 1 i 16 i i 1 i 1 16i 16 16 768024 195840i 768024 195840i 15 17i 8 17 15i 8 520 14 18i 18 14i 6 22i 22 6i 1 i 3 1 2i 3 2i 1 i 3 2 i 2 3i 1 i 3 1 2i 2 3i 1 i 3 2 i 3 2i 64 64 64 64 731952 430848i 731952 430848i 443088 724608i 443088 724608i 14 18i 32 18 14i 32 6 22i 32 22 6i 32 521 11 20i 20 11i proste proste 8 8 463032 982080i 463032 982080i 11 20i 4 20 11i 4 522 9 21i 21 9i 1 i 3 5 2i i 1 i 2 5i 3 32 32 41328 826560i 41328 826560i 9 21i 16 21 9i 16 529 23 proste 8 1119368 234 530 13 19i 19 13i 1 23i 23 i i 1 i 2 i 2 7i i 1 i 1 2i 7 2i 1 i 2 i 7 2i 1 i 1 2i 2 7i 32 32 32 32 636336 539136i 636336 539136i 815184 176256i 815184 176256i 13 19i 16 19 13i 16 1 23i 16 23 i 16 533 7 22i 22 7i 2 23i 23 2i 3 2i 5 4i i 2 3i 4 5i 3 2i 4 5i i 2 3i 5 4i 16 16 16 16 370896 1068480i 370896 1068480i 1062096 388800i 1062096 388800i 7 22i 8 22 7i 8 2 23i 8 23 2i 8 538 3 23i 23 3i 1 i 13 10i i 1 i 10 13i 16 16 754056 430560i 754056 430560i 3 23i 8 23 3i 8 541 10 21i 21 10i proste proste 8 8 240472 1145760i 240472 1145760i 10 21i 4 21 10i 4 544 12 20i 20 12i 1 i 5 4 i i 1 i 5 1 4i 48 48 530712 786240i 530712 786240i 12 20i 24 20 12i 24 545 16 17i 17 16i 4 23i 23 4i i 1 2i 3 10i 2 i 10 3i 1 2i 10 3i i 2 i 3 10i 16 16 16 16 1160688 187392i 1160688 187392i 935952 711552i 935952 711552i 16 17i 8 17 16i 8 4 23i 8 23 4i 8 548 8 22i 22 8i i 1 i 2 4 11i i 1 i 2 11 4i 24 24 170664 960960i 170664 960960i 8 22i 12 22 8i 12 549 15 18i 18 15i 3 5 6i 3 6 5i 16 16 1140784 432960i 1140784 432960i 15 18i 8 18 15i 8 554 5 23i 23 5i 1 i 14 9i i 1 i 9 14i 16 16 603336 695520i 603336 695520i 5 23i 8 23 5i 8 557 14 19i 19 14i proste proste 8 8 1023192 702240i 1023192 702240i 14 19i 4 19 14i 4 562 11 21i 21 11i 1 i 16 5i i 1 i 5 16i 16 16 333144 887040i 333144 887040i 11 21i 8 21 11i 8 565 9 22i 22 9i 6 23i 23 6i 2 i 8 7i i 1 2i 7 8i 2 i 7 8i i 1 2i 8 7i 16 16 16 16 26928 1263168i 26928 1263168i 618192 1101888i 618192 1101888i 9 22i 8 22 9i 8 6 23i 8 23 6i 8 569 13 20i 20 13i proste proste 8 8 868152 960960i 868152 960960i 13 20i 4 20 13i 4 576 24 i 1 i 6 3 56 1074856 2428 577 1 24i 24 i proste proste 8 8 1313288 220800i 1313288 220800i 1 24i 4 24 i 4 578 17 17i 7 23i 23 7i i 1 i 1 4i 4 i 1 i 4 i 2 1 i 1 4i 2 32 24 24 1006128 378204 930240i 378204 930240i 17 17i 16 7 23i 12 23 7i 12 580 16 18i 18 16i 2 24i 24 2i i 1 i 2 2 i 5 2i 1 i 2 1 2i 2 5i i 1 i 2 1 2i 5 2i 1 i 2 2 i 2 5i 48 48 48 48 1061424 209664i 1061424 209664i 1035216 314496i 1035216 314496i 16 18i 24 18 16i 24 2 24i 24 24 2i 24 584 10 22i 22 10i i 1 i 3 8 3i 1 i 3 3 8i 32 32 147288 1077120i 147288 1077120i 10 22i 16 22 10i 16 585 12 21i 21 12i 3 24i 24 3i 2 i 3 3 2i i 1 2i 2 3i 3 2 i 2 3i 3 i 1 2i 3 3 2i 32 32 32 32 712416 1165056i 712416 1165056i 1176864 692736i 1176864 692736i 12 21i 16 21 12i 16 3 24i 16 24 3i 16 586 15 19i 19 15i 1 i 17 2i i 1 i 2 17i 16 16 919224 465120i 919224 465120i 15 19i 8 19 15i 8 592 4 24i 24 4i 1 i 4 1 6i 1 i 4 6 i 40 40 887240 688800i 887240 688800i 4 24i 20 24 4i 20 593 8 23i 23 8i proste proste 8 8 323208 1368960i 323208 1368960i 8 23i 4 23 8i 4 596 14 20i 20 14i i 1 i 2 7 10i i 1 i 2 10 7i 24 24 883896 742560i 883896 742560i 14 20i 12 20 14i 12 601 5 24i 24 5i proste proste 8 8 984008 1057920i 984008 1057920i 5 24i 4 24 5i 4 605 11 22i 22 11i 1 2i 11 2 i 11 16 16 351408 1405632i 351408 1405632i 11 22i 8 22 11i 8 610 13 21i 21 13i 9 23i 23 9i i 1 i 1 2i 6 5i i 1 i 2 i 5 6i i 1 i 1 2i 5 6i i 1 i 2 i 6 5i 32 32 32 32 630576 906624i 630576 906624i 129744 1096704i 129744 1096704i 13 21i 16 21 13i 16 9 23i 16 23 9i 16 612 6 24i 24 6i i 1 i 2 1 4i 3 i 1 i 2 3 4 i 48 48 690768 1023360i 690768 1023360i 6 24i 24 24 6i 24 613 17 18i 18 17i proste proste 8 8 1493272 171360i 1493272 171360i 17 18i 4 18 17i 4 617 16 19i 19 16i proste proste 8 8 1434552 510720i 1434552 510720i 16 19i 4 19 16i 4 625 15 20i 20 15i 7 24i 24 7i 25 i 1 2i 2 i 3 1 2i 3 2 i 1 2i 4 i 2 i 4 1 2i 2 2 i 2 32 32 20 20 36 1287648 822528i 1287648 822528i 704212 1374144i 704212 1374144i 1525732 15 20i 16 20 15i 16 7 24i 10 24 7i 10 2518 626 1 25i 25 i 1 i 13 12i i 1 i 12 13i 16 16 1160616 187200i 1160616 187200i 1 25i 8 25 i 8 628 12 22i 22 12i i 1 i 2 6 11i i 1 i 2 11 6i 24 24 530296 1166880i 530296 1166880i 12 22i 12 22 12i 12 629 10 23i 23 10i 2 25i 25 2i i 1 4i 1 6i 4 i 6 i 1 4i 6 i i 1 6i 4 i 16 16 16 16 105264 1583040i 105264 1583040i 1507536 494400i 1507536 494400i 10 23i 8 23 10i 8 2 25i 8 25 2i 8 634 3 25i 25 3i 1 i 14 11i i 1 i 11 14i 16 16 1070856 554400i 1070856 554400i 3 25i 8 25 3i 8 637 14 21i 21 14i 2 3i 7 3 2i 7 16 16 1133744 1152960i 1133744 1152960i 14 21i 8 21 14i 8 640 8 24i 24 8i i 1 i 7 2 i 1 i 7 1 2i 64 64 314568 1258272i 314568 1258272i 8 24i 32 24 8i 32 641 4 25i 25 4i proste proste 8 8 1323528 974400i 1323528 974400i 4 25i 4 25 4i 4 648 18 18i i 1 i 3 32 48 1355172 18 18i 24 650 17 19i 19 17i 11 23i 23 11i 5 25i 25 5i 1 i 1 2i 2 2 3i i 1 i 2 i 2 3 2i i 1 i 2 i 2 2 3i 1 i 1 2i 2 3 2i i 1 i 1 2i 2 i 3 2i 1 i 1 2i 2 i 2 3i 48 48 48 48 64 64 1204008 325728i 1204008 325728i 305448 1209312i 305448 1209312i 866592 881280i 866592 881280i 17 19i 24 19 17i 24 11 23i 24 23 11i 24 5 25i 32 25 5i 32 653 13 22i 22 13i proste proste 8 8 911832 1441440i 911832 1441440i 13 22i 4 22 13i 4 656 16 20i 20 16i 1 i 4 4 5i 1 i 4 5 4i 40 40 1244760 590400i 1244760 590400i 16 20i 20 20 16i 20 657 9 24i 24 9i 3 3 8i 3 8 3i 16 16 236816 1731840i 236816 1731840i 9 24i 8 24 9i 8 661 6 25i 25 6i proste proste 8 8 1027688 1413600i 1027688 1413600i 6 25i 4 25 6i 4 666 15 21i 21 15i 1 i 3 6 i i 1 i 1 6i 3 32 32 1064688 826560i 1064688 826560i 15 21i 16 21 15i 16 673 12 23i 23 12i proste proste 8 8 625912 1700160i 625912 1700160i 12 23i 4 23 12i 4 674 7 25i 25 7i 1 i 16 9i i 1 i 9 16i 16 16 627816 1209600i 627816 1209600i 7 25i 8 25 7i 8 676 10 24i 24 10i 26 i 1 i 2 3 2i 2 1 i 2 2 3i 2 1 i 2 2 3i 3 2i 36 36 48 18564 1478880i 18564 1478880i 1472848 10 24i 18 24 10i 18 2624 677 1 26i 26 i proste proste 8 8 1811688 280800i 1811688 280800i 1 26i 4 26 i 4 680 14 22i 22 14i 2 26i 26 2i 1 i 3 1 4i 2 i 1 i 3 1 2i 4 i i 1 i 3 2 i 4 i i 1 i 3 1 2i 1 4i 64 64 64 64 976752 1086912i 976752 1086912i 1373328 499392i 1373328 499392i 14 22i 32 22 14i 32 2 26i 32 26 2i 32 685 18 19i 19 18i 3 26i 26 3i 2 i 11 4i i 1 2i 4 11i 1 2i 11 4i i 2 i 4 11i 16 16 16 16 1852848 128448i 1852848 128448i 1695312 758592i 1695312 758592i 18 19i 8 19 18i 8 3 26i 8 26 3i 8 689 17 20i 20 17i 8 25i 25 8i 3 2i 7 2i i 2 3i 2 7i 2 3i 7 2i i 2 7i 3 2i 16 16 16 16 1795824 593280i 1795824 593280i 623376 1785600i 623376 1785600i 17 20i 8 20 17i 8 8 25i 8 25 8i 8 692 4 26i 26 4i i 1 i 2 2 13i i 1 i 2 13 2i 24 24 1275144 892320i 1275144 892320i 4 26i 12 26 4i 12 697 16 21i 21 16i 11 24i 24 11i 4 i 5 4i i 1 4i 4 5i 4 i 4 5i i 1 4i 5 4i 16 16 16 16 1674864 990720i 1674864 990720i 292464 1923840i 292464 1923840i 16 21i 8 21 16i 8 11 24i 8 24 11i 8 698 13 23i 23 13i 1 i 18 5i i 1 i 5 18i 16 16 684024 1291680i 684024 1291680i 13 23i 8 23 13i 8 701 5 26i 26 5i proste proste 8 8 1424808 1354080i 1424808 1354080i 5 26i 4 26 5i 4 706 9 25i 25 9i 1 i 17 8i i 1 i 8 17i 16 16 280296 1468800i 280296 1468800i 9 25i 8 25 9i 8 709 15 22i 22 15i proste proste 8 8 1474072 1367520i 1474072 1367520i 15 22i 4 22 15i 4 712 6 26i 26 6i i 1 i 3 8 5i 1 i 3 5 8i 32 32 995112 1272960i 995112 1272960i 6 26i 16 26 6i 16 720 12 24i 24 12i 1 i 4 1 2i 3 1 i 4 2 i 3 80 80 403440 1613760i 403440 1613760i 12 24i 40 24 12i 40 722 19 19i 1 i 19 16 1563864 19 19i 8 724 18 20i 20 18i i 1 i 2 9 10i i 1 i 2 10 9i 24 24 1665976 355680i 1665976 355680i 18 20i 12 20 18i 12 725 14 23i 23 14i 10 25i 25 10i 7 26i 26 7i i 1 2i 2 5 2i i 2 i 2 2 5i i 1 2i 2 i 2 5i i 1 2i 2 i 5 2i 2 i 2 5 2i 1 2i 2 2 5i 24 24 32 32 24 24 1137864 1738464i 1137864 1738464i 102816 2056320i 102816 2056320i 958776 1843296i 958776 1843296i 14 23i 12 23 14i 12 10 25i 16 25 10i 16 7 26i 12 26 7i 12 729 27 33 16 2152336 278 730 17 21i 21 17i 1 27i 27 i i 1 i 2 i 3 8i i 1 i 1 2i 8 3i i 1 i 1 2i 3 8i i 1 i 2 i 8 3i 32 32 32 32 1468656 588096i 1468656 588096i 1572624 172224i 1572624 172224i 17 21i 16 21 17i 16 1 27i 16 27 i 16 733 2 27i 27 2i proste proste 8 8 2055848 626400i 2055848 626400i 2 27i 4 27 2i 4 738 3 27i 27 3i 1 i 3 5 4i i 1 i 3 4 5i 32 32 1493712 708480i 1493712 708480i 3 27i 16 27 3i 16 740 16 22i 22 16i 8 26i 26 8i 1 i 2 1 2i 1 6i i 1 i 2 2 i 6 i i 1 i 2 1 2i 6 i 1 i 2 1 6i 2 i 48 48 48 48 1385904 1088256i 1385904 1088256i 710736 1612416i 710736 1612416i 16 22i 24 22 16i 24 8 26i 24 26 8i 24 745 13 24i 24 13i 4 27i 27 4i 2 i 10 7i i 1 2i 7 10i 2 i 7 10i i 1 2i 10 7i 16 16 16 16 962928 1974528i 962928 1974528i 1778832 1289088i 1778832 1289088i 13 24i 8 24 13i 8 4 27i 8 27 4i 8 746 11 25i 25 11i 1 i 18 7i i 1 i 7 18i 16 16 145464 1663200i 145464 1663200i 11 25i 8 25 11i 8 754 15 23i 23 15i 5 27i 27 5i i 1 i 2 5i 3 2i i 1 i 2 3i 5 2i i 1 i 2 3i 2 5i i 1 i 3 2i 5 2i 32 32 32 32 1150128 1249920i 1150128 1249920i 1269072 1128960i 1269072 1128960i 15 23i 16 23 15i 16 5 27i 16 27 5i 16 757 9 26i 26 9i proste proste 8 8 540008 2227680i 540008 2227680i 9 26i 4 26 9i 4 761 19 20i 20 19i proste proste 8 8 2304312 237120i 2304312 237120i 19 20i 4 20 19i 4 765 18 21i 21 18i 6 27i 27 6i i 1 2i 1 4i 3 2 i 3 4 i 1 2i 3 4 i i 1 4i 2 i 3 32 32 32 32 2208096 802944i 2208096 802944i 1570464 1747584i 1570464 1747584i 18 21i 16 21 18i 16 6 27i 16 27 6i 16 769 12 25i 25 12i proste proste 8 8 514552 2308800i 514552 2308800i 12 25i 4 25 12i 4 772 14 24i 24 14i i 1 i 2 7 12i i 1 i 2 12 7i 24 24 998296 1659840i 998296 1659840i 14 24i 12 24 14i 12 773 17 22i 22 17i proste proste 8 8 2085912 1166880i 2085912 1166880i 17 22i 4 22 17i 4 776 10 26i 26 10i i 1 i 3 9 4i 1 i 3 4 9i 32 32 195432 1909440i 195432 1909440i 10 26i 16 26 10i 16 778 7 27i 27 7i 1 i 17 10i i 1 i 10 17i 16 16 958536 1542240i 958536 1542240i 7 27i 8 27 7i 8 784 28 1 i 4 7 40 1969640 2820 785 16 23i 23 16i 1 28i 28 i 2 i 11 6i i 1 2i 6 11i 2 i 6 11i i 1 2i 11 6i 16 16 16 16 1909488 1517568i 1909488 1517568i 2398992 440448i 2398992 440448i 16 23i 8 23 16i 8 1 28i 8 28 i 8 788 2 28i 28 2i i 1 i 2 1 14i i 1 i 2 14 i 24 24 1936584 567840i 1936584 567840i 2 28i 12 28 2i 12 793 8 27i 27 8i 3 28i 28 3i 3 2i 6 5i i 2 3i 5 6i 3 2i 5 6i i 2 3i 6 5i 16 16 16 16 1008016 2292480i 1008016 2292480i 2275216 1046400i 2275216 1046400i 8 27i 8 27 8i 8 3 28i 8 28 3i 8 794 13 25i 25 13i 1 i 19 6i i 1 i 6 19i 16 16 643704 1778400i 643704 1778400i 13 25i 8 25 13i 8 797 11 26i 26 11i proste proste 8 8 76632 2539680i 76632 2539680i 11 26i 4 26 11i 4 800 20 20i 4 28i 28 4i i 1 i 5 1 2i 2 i i 1 i 5 1 2i 2 i 1 i 5 2 i 2 96 72 72 2004912 1746108 1022112i 1746108 1022112i 20 20i 48 4 28i 36 28 4i 36 801 15 24i 24 15i 3 5 8i 3 8 5i 16 16 1599984 2046720i 1599984 2046720i 15 24i 8 24 15i 8 802 19 21i 21 19i 1 i 20 i i 1 i 1 20i 16 16 1891224 383040i 1891224 383040i 19 21i 8 21 19i 8 808 18 22i 22 18i i 1 i 3 10 i 1 i 3 1 10i 32 32 1918008 807840i 1918008 807840i 18 22i 16 22 18i 16 809 5 28i 28 5i proste proste 8 8 1990728 1700160i 1990728 1700160i 5 28i 4 28 5i 4 810 9 27i 27 9i 1 i 2 i 32 i 1 i 1 2i 32 48 48 478296 1913184i 478296 1913184i 9 27i 24 27 9i 24 818 17 23i 23 17i 1 i 20 3i i 1 i 3 20i 16 16 1661784 1126080i 1661784 1126080i 17 23i 8 23 17i 8 820 12 26i 26 12i 6 28i 28 6i i 1 i 2 2 i 5 4i 1 i 2 1 2i 4 5i i 1 i 2 2 i 4 5i 1 i 2 1 2i 5 4i 48 48 48 48 424944 2119104i 424944 2119104i 1372176 1669824i 1372176 1669824i 12 26i 24 26 12i 24 6 28i 24 28 6i 24 821 14 25i 25 14i proste proste 8 8 1223832 2402400i 1223832 2402400i 14 25i 4 25 14i 4 829 10 27i 27 10i proste proste 8 8 416168 2717280i 416168 2717280i 10 27i 4 27 10i 4 832 16 24i 24 16i i 1 i 6 2 3i i 1 i 6 3 2i 56 56 1546744 1572960i 1546744 1572960i 16 24i 28 24 16i 28 833 7 28i 28 7i 1 4i 7 4 i 7 16 16 1556496 2305920i 1556496 2305920i 7 28i 8 28 7i 8 841 20 21i 21 20i 29 i 2 5i 2 5 2i 2 i 2 5i 5 2i 12 12 16 2815508 278880i 2815508 278880i 2829456 20 21i 6 21 20i 6 298 842 1 29i 29 i 1 i 15 14i i 1 i 14 15i 16 16 2106696 292320i 2106696 292320i 1 29i 8 29 i 8 845 19 22i 22 19i 13 26i 26 13i 2 29i 29 2i i 2 i 2 3i 2 i 1 2i 3 2i 2 i 1 2i 2 3i 3 2i i 2 i 2 3i 3 2i i 1 2i 2 3i 2 i 2 i 3 2i 2 24 24 32 32 24 24 2721672 716832i 2721672 716832i 679776 2719104i 679776 2719104i 2738808 648288i 2738808 648288i 19 22i 12 22 19i 12 13 26i 16 26 13i 16 2 29i 12 29 2i 12 848 8 28i 28 8i 1 i 4 2 7i 1 i 4 7 2i 40 40 1018440 2066400i 1018440 2066400i 8 28i 20 28 8i 20 850 15 25i 25 15i 11 27i 27 11i 3 29i 29 3i i 1 i 1 2i 2 i 4 i 1 i 1 2i 1 4i 2 i 1 i 1 2i 2 1 4i i 1 i 2 i 2 4 i i 1 i 1 4i 2 i 2 1 i 1 2i 2 4 i 64 64 48 48 48 48 1189728 1762560i 1189728 1762560i 137592 2141568i 137592 2141568i 1934712 928512i 1934712 928512i 15 25i 32 25 15i 32 11 27i 24 27 11i 24 3 29i 24 29 3i 24 853 18 23i 23 18i proste proste 8 8 2574232 1357920i 2574232 1357920i 18 23i 4 23 18i 4 857 4 29i 29 4i proste proste 8 8 2507208 1531200i 2507208 1531200i 4 29i 4 29 4i 4 865 17 24i 24 17i 9 28i 28 9i i 1 2i 2 13i 2 i 13 2i 1 2i 13 2i i 2 i 2 13i 16 16 16 16 2235888 1942272i 2235888 1942272i 1058832 2765952i 1058832 2765952i 17 24i 8 24 17i 8 9 28i 8 28 9i 8 866 5 29i 29 5i 1 i 17 12i i 1 i 12 17i 16 16 1745256 1419840i 1745256 1419840i 5 29i 8 29 5i 8 872 14 26i 26 14i i 1 i 3 10 3i 1 i 3 3 10i 32 32 955128 2227680i 955128 2227680i 14 26i 16 26 14i 16 873 12 27i 27 12i 3 4 9i 3 9 4i 16 16 314224 3070080i 314224 3070080i 12 27i 8 27 12i 8 877 6 29i 29 6i proste proste 8 8 2107688 2241120i 2107688 2241120i 6 29i 4 29 6i 4 881 16 25i 25 16i proste proste 8 8 2015352 2361600i 2015352 2361600i 16 25i 4 25 16i 4 882 21 21i 1 i 3 7 32 2363568 21 21i 16 884 20 22i 22 20i 10 28i 28 10i i 1 i 2 3 2i 4 i 1 i 2 1 4i 2 3i i 1 i 2 2 3i 4 i 1 i 2 1 4i 3 2i 48 48 48 48 2491632 461760i 2491632 461760i 503568 2483520i 503568 2483520i 20 22i 24 22 20i 24 10 28i 24 28 10i 24 890 19 23i 23 19i 7 29i 29 7i i 1 i 1 2i 8 5i i 1 i 2 i 5 8i i 1 i 1 2i 5 8i i 1 i 2 i 8 5i 32 32 32 32 2148336 955584i 2148336 955584i 1445904 1854144i 1445904 1854144i 19 23i 16 23 19i 16 7 29i 16 29 7i 16 898 13 27i 27 13i 1 i 20 7i i 1 i 7 20i 16 16 537624 2358720i 537624 2358720i 13 27i 8 27 13i 8 900 18 24i 24 18i 30 i 1 i 2 2 i 2 3 1 i 2 1 2i 2 3 1 i 2 1 2i 2 i 3 72 72 96 2272712 1330368i 2272712 1330368i 2609568 18 24i 36 24 18i 36 3048 901 15 26i 26 15i 1 30i 30 i i 1 4i 2 7i 4 i 7 2i 2 7i 4 i i 1 4i 7 2i 16 16 16 16 1614384 2825280i 1614384 2825280i 3224016 440640i 3224016 440640i 15 26i 8 26 15i 8 1 30i 8 30 i 8 904 2 30i 30 2i i 1 i 3 8 7i 1 i 3 7 8i 32 32 2512872 685440i 2512872 685440i 2 30i 16 30 2i 16 905 11 28i 28 11i 8 29i 29 8i 2 i 10 9i i 1 2i 9 10i 2 i 9 10i i 1 2i 10 9i 16 16 16 16 112272 3239808i 112272 3239808i 1425552 2911488i 1425552 2911488i 11 28i 8 28 11i 8 8 29i 8 29 8i 8 909 3 30i 30 3i 1 10i 3 3 10 i 16 16 3083856 1298880i 3083856 1298880i 3 30i 8 30 3i 8 914 17 25i 25 17i 1 i 21 4i i 1 i 4 21i 16 16 1828824 1713600i 1828824 1713600i 17 25i 8 25 17i 8 916 4 30i 30 4i i 1 i 2 2 15i i 1 i 2 15 2i 24 24 2352584 1379040i 2352584 1379040i 4 30i 12 30 4i 12 922 9 29i 29 9i 1 i 19 10i i 1 i 10 19i 16 16 915336 2380320i 915336 2380320i 9 29i 8 29 9i 8 925 21 22i 22 21i 14 27i 27 14i 5 30i 30 5i i 1 2i 2 6 i i 1 6i 2 i 2 2 i 2 6 i 1 2i 2 1 6i i 1 2i 1 6i 2 i i 1 2i 2 i 6 i 24 24 24 24 32 32 3355144 440544i 3355144 440544i 1258504 3141216i 1258504 3141216i 2648736 2056320i 2648736 2056320i 21 22i 12 22 21i 12 14 27i 12 27 14i 12 5 30i 16 30 5i 16 928 12 28i 28 12i 1 i 5 5 2i i 1 i 5 2 5i 48 48 137592 2751840i 137592 2751840i 12 28i 24 28 12i 24 929 20 23i 23 20i proste proste 8 8 3319032 949440i 3319032 949440i 20 23i 4 23 20i 4 932 16 26i 26 16i i 1 i 2 8 13i i 1 i 2 13 8i 24 24 1676376 2271360i 1676376 2271360i 16 26i 12 26 16i 12 936 6 30i 30 6i i 1 i 3 3 3 2i 1 i 3 2 3i 3 64 64 1973904 2007360i 1973904 2007360i 6 30i 32 30 6i 32 937 19 24i 24 19i proste proste 8 8 3142072 1568640i 3142072 1568640i 19 24i 4 24 19i 4 941 10 29i 29 10i proste proste 8 8 850728 3438240i 850728 3438240i 10 29i 4 29 10i 4 949 18 25i 25 18i 7 30i 30 7i 3 2i 8 3i i 2 3i 3 8i 2 3i 8 3i i 3 2i 3 8i 16 16 16 16 2875184 2145600i 2875184 2145600i 2193616 2838720i 2193616 2838720i 18 25i 8 25 18i 8 7 30i 8 30 7i 8 953 13 28i 28 13i proste proste 8 8 607032 3581760i 607032 3581760i 13 28i 4 28 13i 4 954 15 27i 27 15i 1 i 3 7 2i i 1 i 2 7i 3 32 32 1222128 2479680i 1222128 2479680i 15 27i 16 27 15i 16 961 31 proste 8 3694088 314 962 11 29i 29 11i 1 31i 31 i i 1 i 1 6i 3 2i i 1 i 2 3i 6 i 1 i 3 2i 6 i 1 i 1 6i 2 3i 32 32 32 32 322512 2747520i 322512 2747520i 2741712 368640i 2741712 368640i 11 29i 16 29 11i 16 1 31i 16 31 i 16 964 8 30i 30 8i i 1 i 2 4 15i i 1 i 2 15 4i 24 24 1522664 2608320i 1522664 2608320i 8 30i 12 30 8i 12 965 17 26i 26 17i 2 31i 31 2i 2 i 12 7i i 1 2i 7 12i 2 i 7 12i i 1 2i 12 7i 16 16 16 16 2603568 2609088i 2603568 2609088i 3525072 1076928i 3525072 1076928i 17 26i 8 26 17i 8 2 31i 8 31 2i 8 968 22 22i i 1 i 3 11 32 2986968 22 22i 16 970 21 23i 23 21i 3 31i 31 3i i 1 i 2 i 4 9i i 1 i 1 2i 9 4i i 1 i 1 2i 4 9i i 1 i 2 i 9 4i 32 32 32 32 2764656 398016i 2764656 398016i 2626704 949824i 2626704 949824i 21 23i 16 23 21i 16 3 31i 16 31 3i 16 976 20 24i 24 20i 1 i 4 5 6i 1 i 4 6 5i 40 40 2851960 1082400i 2851960 1082400i 20 24i 20 24 20i 20 977 4 31i 31 4i proste proste 8 8 3326088 1874880i 3326088 1874880i 4 31i 4 31 4i 4 980 14 28i 28 14i i 1 i 2 1 2i 7 i 1 i 2 2 i 7 48 48 749424 2997696i 749424 2997696i 14 28i 24 28 14i 24 981 9 30i 30 9i 3 3 10i 3 10 3i 16 16 1535696 3581760i 1535696 3581760i 9 30i 8 30 9i 8 985 16 27i 27 16i 12 29i 29 12i i 1 2i 1 14i 2 i 14 i 1 2i 14 i i 1 14i 2 i 16 16 16 16 1942128 3313152i 1942128 3313152i 154512 3837312i 154512 3837312i 16 27i 8 27 16i 8 12 29i 8 29 12i 8 986 19 25i 25 19i 5 31i 31 5i i 1 i 1 4i 5 2i i 1 i 2 5i 4 i 1 i 4 i 5 2i 1 i 1 4i 2 5i 32 32 32 32 2500848 1512000i 2500848 1512000i 2337552 1753920i 2337552 1753920i 19 25i 16 25 19i 16 5 31i 16 31 5i 16 997 6 31i 31 6i proste proste 8 8 2868968 2752800i 2868968 2752800i 6 31i 4 31 6i 4 1000 18 26i 26 18i 10 30i 30 10i i 1 i 3 1 2i 3 1 i 3 2 i 3 1 i 3 1 2i 2 i 2 i 1 i 3 1 2i 2 2 i 64 64 96 96 2288880 2164032i 2288880 2164032i 875160 2991456i 875160 2991456i 18 26i 32 26 18i 32 10 30i 48 30 10i 48Div takozhGausovi chisla Tablicya dilnikiv Rozkladi gausovih chisel na prosti mnozhniki tablicya Funkciya dilnikivPrimitkiHardy G H Wright E M 1968 An introduction to the theory of numbers Anglijskoyu movoyu Oxford University Press s 182 183 LiteraturaHardy G H Wright E M 1968 An introduction to the theory of numbers vid 4th Stillwell John 2003 Elements of Number Theory vid 4 Science Business Media New York ISBN 978 1 4419 3066 8 Willerging M F Divisibility and factorization of Gaussian integers The Mathematics Teacher 1966 T 59 vip 7 S 634 637