Підтримка
www.wikidata.uk-ua.nina.az
Relyativistske upovilnennya chasu efekti upovilnennya chasu sho opisuyutsya v mezhah zagalnoyi ta specialnoyi teorij vidnosnosti Prichinami relyativistskogo upovilnennya chasu vidpovidno ye perebuvannya sistem vidliku na riznij vidstani vid masivnogo tila u poli jogo gravitaciyi dzherelo ta nenulova shvidkist ruhu inercialnoyi sistemi vidliku vidnosno neporushnogo sposterigacha Upovilnennya chasu ne zalezhit vid vlastivostej godinnika sho vimiryuye chas i ye naslidkom vlastivostej prostoru chasu u pevnij tochci dlya yakoyi viznachayetsya chasovij interval Z tochki zoru sistemi vidliku sinogo godinnika chervonij godinnik sho ruhayetsya sprijmayetsya yak takij sho jde povilshishe utrirovana shema Upovilnennya chasu v mezhah specialnoyi teoriyi vidnosnostiU mezhah specialnoyi teoriyi vidnosnosti upovilnennya chasu ye naslidkom principu rivnopravnosti inercialnih sistem vidliku ta peretvoren Lorenca sho sliduyut iz nogo Mozhna rozglyanuti dvi podiyi prostorovo chasovij interval mizh yakimi ye chasopodibnim Vidpovidno chasovi intervali D t displaystyle Delta t ta D t displaystyle Delta t mizh podiyami sho rozglyadayutsya vidnosno neruhomoyi inercialnoyi sistemi vidliku A ta inercialnoyi sistemi vidliku A sho ruhayetsya budut riznimi Mozhna prijnyati sho vidnosno sistemi vidliku A prostoropodibnij interval dorivnyuye nulyu D x D y D z 0 1 displaystyle Delta x prime Delta y prime Delta z prime 0 qquad 1 tobto koordinati tochki podiyi v cij sistemi vidliku ne zminyuyutsya Yaksho rozglyanuti zv yazok chasovih intervaliv D t displaystyle Delta t ta D t displaystyle Delta t u ramkah peretvorennya Lorenca chasovoyi komponenti linijnogo elementu intervala D s displaystyle Delta s pri perehodi vid inercialnoyi sistemi vidliku A do inercialnoyi sistemi vidliku A D t D t D x v c 2 1 v 2 c 2 displaystyle Delta t frac Delta t frac Delta x v c 2 sqrt 1 frac v 2 c 2 ta vrahuvati vidpovidno do 1 displaystyle 1 sho D x 0 displaystyle Delta x 0 mozhna otrimati kilkisne spivvidnoshennya mizh D t displaystyle Delta t ta D t displaystyle Delta t D t D t 1 v 2 c 2 2 displaystyle Delta t frac Delta t sqrt 1 frac v 2 c 2 qquad 2 Pri comu D x v D t 1 v 2 c 2 displaystyle Delta x frac v Delta t sqrt 1 frac v 2 c 2 Z 2 displaystyle 2 vidno sho najkorotshij chasovij interval mizh dvoma podiyami bude viznachatis todi koli vidnosno inercialnoyi sistemi vidliku de znahoditsya godinnik vikonuyetsya umova 1 displaystyle 1 Yaksho teper rozglyanuti ob yekt sho ruhayetsya vidnosno inercialnoyi sistemi vidliku A po krivolinijnij trayektoriyi zi zminnoyu u chasi shvidkistyu v displaystyle v i rozbiti jogo trayektoriyu na mnozhinu bezkinechno malih intervaliv na prohodzhennya yakih vidnosno neruhomoyi inercialnoyi sistemi vidliku potriben chas d t displaystyle dt to vidnovidno godinniku u suputnij lokalno inercialnij inercialnoyi sistemi vidliku na prohodzhennya togo zh intervalu zgidno z 2 displaystyle 2 bude potriben chas d t d t 1 v 2 c 2 d t d t 1 v 2 c 2 3 displaystyle dt dt sqrt 1 frac v 2 c 2 Rightarrow dt frac dt sqrt 1 frac v 2 c 2 qquad 3 Todi sumarnij interval chasu sho vimiryuyetsya vidnosno inercialnoyi sistemi vidliku A ne zalezhit vid priskorennya j bude viznachatisya integralom virazu 3 t 2 t 1 0 t d t 1 v 2 c 2 4 displaystyle t 2 t 1 int limits 0 t frac dt sqrt 1 frac v 2 c 2 qquad 4 Z 4 displaystyle 4 vidno sho chasovij interval ne zalezhit vid priskorennya Upovilnennya chasu u ramkah zagalnoyi teoriyi vidnosnostiU osnovi zagalnoyi teoriyi vidnosnosti lezhit metrichnij tenzor g i k x displaystyle g ik x de i k 0 1 2 3 displaystyle i k 0 1 2 3 yakij pri zmini koordinat zminyuyetsya takim chinom sho velichina prostorovo chasovogo intervalu mizh dvoma podiyami z koordinatami x i displaystyle x i ta x i d x i displaystyle x i dx i zalishayetsya nezminnoyu d s 2 g i k x d x i d x k inv displaystyle ds 2 g ik x dx i dx k text inv Yaksho prijnyati sho d x 1 d x 2 d x 3 displaystyle dx 1 dx 2 dx 3 tobto godinnik neruhomij mozhna otrimati spivvidnoshennya mizh intervalom svitovogo d t d s c displaystyle d tau frac ds c ta vlasnogo d t d x 0 c 5 displaystyle dt frac dx 0 c qquad 5 chasu Dlya cogo treba vrahuvati sho interval d s 2 displaystyle ds 2 svitovoyi liniyi neruhomogo godinnika u gravitacijnomu potenciali dorivnyuye d s 2 c 2 d t 2 g 00 d x 0 2 6 displaystyle ds 2 c 2 d tau 2 g 00 dx 0 2 qquad 6 Todi z urahuvannyam 5 displaystyle 5 6 displaystyle 6 prijme viglyad d s 2 c 2 d t 2 c 2 g 00 d t 2 displaystyle ds 2 c 2 d tau 2 c 2 g 00 dt 2 Zvidsi d t g 00 d t displaystyle d tau sqrt g 00 dt de g 00 1 2 f c 2 displaystyle g 00 1 frac 2 varphi c 2 funkciya x displaystyle x Zagalnij viraz dlya upovilnennya chasuNehaj ob yekt neruhomij u deyakij moment chasu Todi interval mizh dvoma podiyami pov yazanimi z ob yektom bude mati viglyad d s 2 c 2 d t 2 7 displaystyle ds 2 c 2 dt 2 qquad 7 Z inshogo boku d s 2 displaystyle ds 2 takozh dorivnyuye d s 2 d s 2 c d t g m d x m 2 8 displaystyle ds 2 d sigma 2 c d tau gamma mu dx mu 2 qquad 8 de d s 2 displaystyle d sigma 2 kvadratichna forma diferenciala d x m displaystyle dx mu g m displaystyle gamma mu vektornij gravitacijnij potencial c c g 00 displaystyle c c sqrt g 00 serednya shvidkist svitla ortogonalna vektoru g m displaystyle gamma mu Pririvnyavshi 8 displaystyle 8 do virazu 7 displaystyle 7 mozhna otrimati d s 2 c 2 d t 2 d s 2 c d t g m d x m 2 c d t c d t g m d x m 2 d s 2 9 displaystyle ds 2 c 2 dt 2 d sigma 2 c d tau gamma mu dx mu 2 Longleftrightarrow cdt sqrt c d tau gamma mu dx mu 2 d sigma 2 qquad 9 Provivshi z 9 displaystyle 9 peretvorennya d t 1 c 2 d t 2 c d x m d t 2 d s 2 d t c g 00 c g m d x m c d t 2 d s c d t 2 d t g 00 g m v m c 2 v 2 c 2 10 displaystyle dt sqrt frac 1 c 2 d tau 2 c frac dx mu d tau 2 d sigma 2 d tau sqrt frac c sqrt g 00 c gamma mu frac dx mu cd tau 2 frac d sigma cd tau 2 d tau sqrt sqrt g 00 gamma mu frac v mu c 2 frac v 2 c 2 qquad 10 Yaksho inercijna sistema vidliku chasoortogonalna to g m 0 displaystyle gamma mu 0 i viraz 10 displaystyle 10 nabude viglyadu d t d t g 00 v 2 c 2 d t 1 2 f c 2 v 2 c 2 displaystyle dt d tau sqrt g 00 frac v 2 c 2 d tau sqrt 1 frac 2 varphi c 2 frac v 2 c 2 de f displaystyle varphi skalyarnij gravitacijnij potencial Div takozhGravitacijne chervone zmishennya Gravitacijne upovilnennya chasu Zagalna teoriya vidnosnosti Paradoks bliznyat Eksperiment Hafele KitingaPrimitkiHrasko Peter 2011 vid illustrated Springer Science amp Business Media s 60 ISBN 978 3 642 17810 8 Arhiv originalu za 22 listopada 2017 Procitovano 1 kvitnya 2018 Extract of page 60 17 lyutogo 2017 u Wayback Machine LiteraturaLandau L D Lifshic E M Teoriya polya Izdanie 8 e stereotipnoe M Fizmatlit 2006 534 s Teoreticheskaya fizika tom II ISBN 5 9221 0056 4
Топ