Підтримка
www.wikidata.uk-ua.nina.az
Pra vilo Lopita lya u matematichnomu analizi metod znahodzhennya granic funkciyi rozkrittya neviznachenostej viglyadu 0 0 displaystyle 0 0 i displaystyle infty infty Teorema sho obgruntovuye metod stverdzhuye sho za deyakih umov granicya vid chastki funkcij dorivnyuye granici chastki yihnih pohidnih Tochne formulyuvannyaPravilo govorit sho yaksho funkciyi f x displaystyle f x i g x displaystyle g x zadovolnyayut taki umovi lim x a f x lim x a g x 0 displaystyle lim x to a f x lim x to a g x 0 abo displaystyle infty lim x a f x g x displaystyle exists lim x to a frac f x g x g x 0 displaystyle g x neq 0 v prokolotomu okoli a displaystyle a Yaksho f x displaystyle f x i g x displaystyle g x diferencijovni v prokolotomu okoli a displaystyle a to isnuye lim x a f x g x lim x a f x g x displaystyle lim x to a frac f x g x lim x to a frac f x g x Pri comu teorema virna i dlya inshih baz dlya vkazanoyi bude navedeno dokaz IstoriyaSposib rozkrittya takogo rodu neviznachenostej bulo opublikovano Lopitalem u praci Analiz neskinchenno malih vidanij 1696 roku U peredmovi do praci Lopital zaznachiv sho vin koristuvavsya vidkrittyami Lejbnica i brativ Bernulli i ne maye nichogo proti togo shob voni zayavili svoyi avtorski prava na vse sho yim zavgodno Jogann Bernulli visloviv pretenziyi na vsyu pracyu Lopitalya cilkom i zokrema pislya smerti Lopitalya opublikuvav pracyu pid primitnoyu nazvoyu Udoskonalennya mogo opublikovanogo v Analizi neskinchenno malih metodu dlya viznachennya znachennya drobu chiselnik i znamennik yakogo inkoli znikayut 1704 DovedennyaVidnoshennya neskinchenno malih Dovedemo teoremu dlya vipadku koli granici funkcij dorivnyuyut nulyu t z neviznachenist viglyadu 0 0 displaystyle left frac 0 0 right Oskilki mi rozglyadayemo funkciyi f displaystyle f i g displaystyle g lishe u pravomu prokolotomu pivokoli tochki a displaystyle a mi mozhemo neperervnim chinom yih doviznachiti v cij tochci nehaj f a g a 0 displaystyle f a g a 0 Vizmemo deyakij x displaystyle x z danogo pivokolu i zastosuyemo do vidrizku a x displaystyle a x teoremu Koshi Za ciyeyu teoremoyu otrimayemo c a x f x f a g x g a f c g c displaystyle exists c in a x frac f x f a g x g a frac f c g c ale f a g a 0 displaystyle f a g a 0 tomu x c a x f x g x f c g c displaystyle forall x exists c in a x frac f x g x frac f c g c Dali zapisavshi viznachennya granici funkciyi vidnoshennya pohidnih i poznachivshi ostannyu cherez A displaystyle A z otrimanoyi rivnosti vivodimo e gt 0 d gt 0 x x a lt d f x g x A lt e displaystyle forall varepsilon gt 0 exists delta gt 0 forall x x a lt delta Rightarrow left frac f x g x A right lt varepsilon dlya skinchennoyi granici i M gt 0 d gt 0 x x a lt d f x g x gt M displaystyle forall M gt 0 exists delta gt 0 forall x x a lt delta Rightarrow left frac f x g x right gt M dlya neskinchenoyi sho ye viznachennyam granici vidnoshennya funkcij Vidnoshennya neskinchenno velikih Dovedemo teoremu dlya neviznachenostej viglyadu displaystyle left frac infty infty right Nehaj dlya pochatku granicya vidnoshennya pohidnih skinchenna i rivna A displaystyle A Todi pri pryamuvanni x displaystyle x do a displaystyle a sprava ce vidnoshennya mozhna zapisati yak A a displaystyle A alpha de a displaystyle alpha 1 Zapishemo cyu umovu e 1 d 1 x x a lt d 1 a x lt e 1 displaystyle forall varepsilon 1 exists delta 1 forall x x a lt delta 1 Rightarrow alpha x lt varepsilon 1 Zafiksuyemo t displaystyle t z vidrizka a a d 1 displaystyle a a delta 1 i zastosuyemo teoremu Koshi do vsih x displaystyle x z vidrizka a t displaystyle a t x a t c a x f x f t g x g t f c g c displaystyle forall x in a t exists c in a x frac f x f t g x g t frac f c g c sho mozhna privesti do takogo viglyadu f x g x 1 g t g x 1 f t f x f c g c displaystyle frac f x g x frac 1 frac g t g x 1 frac f t f x cdot frac f c g c Dlya x displaystyle x dostatno blizkih do a displaystyle a viraz maye mezhu pershogo mnozhnika pravoyi chastini rivnu odinici oskilki f t displaystyle f t i g t displaystyle g t konstanti a f x displaystyle f x i g x displaystyle g x pryamuyut do bezmezhnosti Znachit cej mnozhnik rivnij 1 b displaystyle 1 beta de b displaystyle beta neskinchenno mala funkciya pri pryamuvanni x displaystyle x do a displaystyle a sprava Vipishemo viznachennya cogo faktu vikoristovuyuchi te zh znachennya e displaystyle varepsilon sho i v viznachenni dlya a displaystyle alpha e 1 d 2 x x a lt d 2 b x lt e 1 displaystyle forall varepsilon 1 exists delta 2 forall x x a lt delta 2 Rightarrow beta x lt varepsilon 1 Otrimali sho vidnoshennya funkcij mozhna podati u viglyadi 1 b A a displaystyle 1 beta A alpha i f x g x A lt A e 1 e 1 e 1 2 displaystyle left frac f x g x A right lt A varepsilon 1 varepsilon 1 varepsilon 1 2 Po bud yakomu danomu e displaystyle varepsilon mozhna znajti take e 1 displaystyle varepsilon 1 shob modul riznici vidnoshennya funkcij i A displaystyle A buv menshe e displaystyle varepsilon znachit granicya vidnoshennya funkcij dijsno rivna A displaystyle A Prikladilim x 0 x 2 5 x 3 x lim x 0 2 x 5 3 5 3 1 2 3 displaystyle lim x to 0 frac x 2 5x 3x lim x to 0 frac 2x 5 3 frac 5 3 1 frac 2 3 lim x x 3 4 x 2 7 x 9 x 3 3 x 2 displaystyle lim x to infty frac x 3 4x 2 7x 9 x 3 3x 2 tut mozhna zastosuvati pravilo Lopitalya 3 razi a mozhna vchiniti inakshe Mozhna rozdiliti i chiselnik i znamennik na x najbilshoyu miroyu u nashomu vipadku x 3 displaystyle x 3 V danomu prikladi vihodit lim x 1 4 x 7 x 2 9 x 3 1 3 x 1 1 1 displaystyle lim x to infty frac 1 4 x 7 x 2 9 x 3 1 3 x frac 1 1 1 lim x e x x a lim x e x a x a 1 lim x e x a displaystyle lim x to infty frac e x x a lim x to infty frac e x a cdot x a 1 ldots lim x to infty frac e x a infty lim x x a ln x lim x a x a 1 1 x a lim x x a displaystyle lim x to infty frac x a ln x lim x to infty frac ax a 1 frac 1 x a cdot lim x to infty x a infty pri a gt 0 displaystyle a gt 0 Lishe yaksho chiselnik i znamennik OBIDVA pryamuyut abo do 0 displaystyle 0 abo do displaystyle infty abo do displaystyle infty Dokladnishe U mistectvi i rozpovidali anekdoti pro rozkrittya neviznachenostej metodom Lopitalya A i B Strugacki Ponedilok pochinayetsya v subotu LiteraturaGrigorij Mihajlovich Fihtengolc Kurs diferencialnogo ta integralnogo chislennya 2024 2200 s ukr PosilannyaPravilo Lopitalya ta zastosuvannya jogo do znahodzhennya granic funkcij Visha matematika v prikladah i zadachah Klepko V Yu Golec V L 2 ge vidannya K Centr uchbovoyi literaturi 2009 S 270 594 s
Топ