Підтримка
www.wikidata.uk-ua.nina.az
Pohidna Li tenzornogo polya Q displaystyle Q za napryamkom vektornogo polya X displaystyle X golovna linijna chastina prirostu tenzornogo polya Q displaystyle Q pri jogo peretvorenni yake indukovane lokalnoyu odnoparametrichnoyu grupoyu difeomorfizmiv mnogovidu sho porodzhena polem X displaystyle X Zazvichaj poznachayetsya L X Q displaystyle mathcal L X Q OznachennyaAksiomatichne Pohidna Li povnistyu oznachayetsya nastupnimi svoyimi vlastivostyami Take oznachennya najbilsh zruchne dlya praktichnih obchislen ale vimagaye dovedennya isnuvannya Pohidna Li L X f displaystyle mathcal L X f vid skalyarnogo polya f displaystyle f ye pohidnoyu f displaystyle f za napryamkom X displaystyle X L X f X f displaystyle mathcal L X f Xf Pohidna Li L X Y displaystyle mathcal L X Y vid vektornogo polya Y displaystyle Y ye duzhka Li vektornih poliv L X Y X Y displaystyle mathcal L X Y X Y Dlya dovilnih vektornih poliv 1 formi a displaystyle alpha vikonuyetsya rivnist L X a Y d a X Y Y a X X a Y a X Y displaystyle mathcal L X alpha Y d alpha X Y Y alpha X X alpha Y alpha X Y pravilo Lejbnica Dlya dovilnih tenzornih poliv S i T vikonuyetsya L X S T L X S T S L X T displaystyle mathcal L X S otimes T mathcal L X S otimes T S otimes mathcal L X T U yavnomu vidi yaksho T ye tenzornim polem tipu p q i a1 a2 aq ye gladkimi kodotichnimi vektornimi polyami diferencialnimi 1 formami a Y1 Y2 Yp ye gladkimi vektornimi polyami todi pohidna Li T po napryamku X ye tenzornim polem togo zh tipu sho zadayetsya yak L Y T a 1 a 2 Y 1 Y 2 Y T a 1 a 2 Y 1 Y 2 displaystyle mathcal L Y T alpha 1 alpha 2 ldots Y 1 Y 2 ldots Y T alpha 1 alpha 2 ldots Y 1 Y 2 ldots T L X a 1 a 2 Y 1 Y 2 T a 1 L X a 2 Y 1 Y 2 displaystyle T mathcal L X alpha 1 alpha 2 ldots Y 1 Y 2 ldots T alpha 1 mathcal L X alpha 2 ldots Y 1 Y 2 ldots ldots T a 1 a 2 L X Y 1 Y 2 T a 1 a 2 X 1 L X Y 2 displaystyle T alpha 1 alpha 2 ldots mathcal L X Y 1 Y 2 ldots T alpha 1 alpha 2 ldots X 1 mathcal L X Y 2 ldots ldots dd Cherez potik Nehaj M displaystyle M n displaystyle n vimirnij gladkij mnogovid i X displaystyle X vektorne pole na M n displaystyle M n Rozglyanemo potik G X t M M displaystyle Gamma X t M to M za X displaystyle X sho viznachayetsya spivvidnoshennyam d d t G X t p X G X t p displaystyle frac d dt Gamma X t p X Gamma X t p Dlya kozhnoyi tochki p M displaystyle p in M isnuye takij okil m U M displaystyle m in U subset M i chislo b R displaystyle b in mathbb R sho potik G X t displaystyle Gamma X t ye viznachenij i vzayemno odnoznachnij dlya vsih n U displaystyle n in U i t b b displaystyle t in b b i takozh dlya kozhnogo takogo t vidobrazhennya G X t displaystyle Gamma X t bude difeomorfizmom iz U Takozh yaksho t s t s b b displaystyle t s t s in b b to G X t s G X t G X s displaystyle Gamma X t s Gamma X t circ Gamma X s tobto potik zadaye odnoparametrichnu sim yu lokalnih difeomorfizmiv Nehaj teper T ye tenzornim polem tipu p q i a1 a2 aq ye gladkimi kodotichnimi vektornimi polyami diferencialnimi 1 formami a Y1 Y2 Yp ye gladkimi vektornimi polyami Rozglyanemo vzayemnooberneni difeomorfizmi G X t displaystyle Gamma X t i G X t 1 displaystyle Gamma X t 1 zadani za umov vkazanih vishe Yaksho m U displaystyle m in U to T G X t m displaystyle T Gamma X t m ye tenzorom tipu p q na dotichnomu prostori mnogovida u tochci G X t p displaystyle Gamma X t p Za dopomogoyu difeomorfizmiv G X t displaystyle Gamma X t i G X t 1 displaystyle Gamma X t 1 cej tenzor mozhna pereslati na dotichnij prostir u tochci m A same zvorotnij tenzora shodo vidobrazhennya tenzora tipu p q shodo difeomorfizmu G X t displaystyle Gamma X t poznachayetsya G X t T displaystyle Gamma X t T nazivayetsya tenzor sho u tochci p ye rivnim G X t T a 1 a q Y 1 Y p m T G X t 1 a 1 G X t 1 a q d G X t Y 1 d G X t Y p G X t m displaystyle Gamma X t T alpha 1 ldots alpha q Y 1 ldots Y p m T Gamma X t 1 alpha 1 ldots Gamma X t 1 alpha q d Gamma X t Y 1 ldots d Gamma X t Y p Gamma X t m U comu virazi nizhni indeksi u kinci kozhnoyi storin vkazuyut u yakih tochkah rozglyadayutsya vidpovidni tenzori d G X t displaystyle d Gamma X t poznachaye diferencial vidobrazhennya a G X t 1 displaystyle Gamma X t 1 zvorotne vidobrazhennya diferencijnih form pri vidobrazhenni G X t 1 displaystyle Gamma X t 1 tobto dlya dovilnoyi diferencialnoyi formi a displaystyle alpha u tochci m i vektora Y u tochci G X t m displaystyle Gamma X t m za oznachennyam G X t 1 a Y a d G X t 1 displaystyle Gamma X t 1 alpha Y alpha d Gamma X t 1 Pohidna Li mozhe buti oznachena yak L X T d d t G X t T t 0 lim t 0 G X t T G X t m T m t displaystyle mathcal L X T frac d dt Gamma X t T t 0 lim t to 0 frac Gamma X t T Gamma X t m T m t Ekvivalentnist oznachen Yaksho tenzorne pole ye skalyarnim polem tobto gladkoyu funkciyeyu f to G X t f f G X t displaystyle Gamma X t f f Gamma X t i lim t 0 f G X t f m t X f displaystyle lim t to 0 frac f Gamma X t f m t Xf sho dovodit ekvivalentnist u comu vipadku Yaksho tenzorne pole ye vektornim polem Y to L X Y X Y displaystyle mathcal L X Y X Y i ekvivalentnist oderzhuyetsya iz ekvivalentnosti riznih oznachen duzhok Li u statti duzhka Li vektornih poliv Dovedemo takozh ekvivalentnist u vipadku kovariantnih tenzoriv zokrema diferencialnih form Dlya cogo spershu zauvazhimo sho za oznachennyam dlya bud yakogo difeomorfizma f M M displaystyle varphi M to M dlya bud yakogo p kovariantnogo tenzora T displaystyle T i vektornih poliv Y 1 Y p displaystyle Y 1 ldots Y p zvorotne vidobrazhennya kovariantnogo tenzora zadovolnyaye rivnosti f T Y 1 Y p m T d f Y 1 d f Y p f m displaystyle varphi T Y 1 ldots Y p m T d varphi Y 1 ldots d varphi Y p varphi m Zvidsi lim t 0 G X t T G X t m Y 1 Y p T m Y 1 Y p t lim t 0 T d G X t Y 1 d G X t Y p G X t m T Y 1 Y p G X t m t lim t 0 T Y 1 Y p G X t m T Y 1 Y p m t displaystyle lim t to 0 frac Gamma X t T Gamma X t m Y 1 ldots Y p T m Y 1 ldots Y p t lim t to 0 frac T d Gamma X t Y 1 ldots d Gamma X t Y p Gamma X t m T Y 1 ldots Y p Gamma X t m t lim t to 0 frac T Y 1 ldots Y p Gamma X t m T Y 1 ldots Y p m t Drugij dodanok u poperednomu virazi za oznachennya ye rivnim X T Y 1 Y p displaystyle X T Y 1 ldots Y p u tochci m Pershij dodanok mozhna zapisati yak lim t 0 T d G X t Y 1 d G X t Y p G X t m T Y 1 Y p G X t m t lim t 0 T d G X t Y 1 d G X t Y p G X t m T Y 1 d G X t Y 2 d G X t Y p G X t m t lim t 0 T Y 1 d G X t Y 2 d G X t Y p G X t m T Y 1 Y 2 d G X t Y 3 d G X t Y p G X t m t lim t 0 T Y 1 Y 2 Y p 1 d G X t Y p G X t m T Y 1 Y 2 Y p G X t m t i 1 p T Y 1 X Y i Y p displaystyle begin aligned lim t to 0 frac T d Gamma X t Y 1 ldots d Gamma X t Y p Gamma X t m T Y 1 ldots Y p Gamma X t m t lim t to 0 frac T d Gamma X t Y 1 ldots d Gamma X t Y p Gamma X t m T Y 1 d Gamma X t Y 2 ldots d Gamma X t Y p Gamma X t m t lim t to 0 frac T Y 1 d Gamma X t Y 2 ldots d Gamma X t Y p Gamma X t m T Y 1 Y 2 d Gamma X t Y 3 ldots d Gamma X t Y p Gamma X t m t ldots lim t to 0 frac T Y 1 Y 2 ldots Y p 1 d Gamma X t Y p Gamma X t m T Y 1 Y 2 ldots Y p Gamma X t m t sum i 1 p T Y 1 ldots X Y i ldots Y p end aligned Ostannya rivnist oderzhuyetsya iz togo sho T Y 1 Y 2 Y i 1 d G X t Y i d G X t Y p G X t m T Y 1 Y 2 Y i 1 Y i d G X t Y p G X t m t T Y 1 Y 2 Y i 1 d G X t Y i Y i t d G X t Y p G X t m displaystyle frac T Y 1 Y 2 ldots Y i 1 d Gamma X t Y i ldots d Gamma X t Y p Gamma X t m T Y 1 Y 2 ldots Y i 1 Y i ldots d Gamma X t Y p Gamma X t m t T left Y 1 Y 2 ldots Y i 1 frac d Gamma X t Y i Y i t ldots d Gamma X t Y p right Gamma X t m Todi zvazhayuchi na te sho vsi vektorni polya Y i G X t displaystyle Y i Gamma X t diferenciali d G X t displaystyle d Gamma X t i tenzori T G X t displaystyle T Gamma X t neperervno zalezhat vid t to granici Y i G X t displaystyle Y i Gamma X t i d G X t Y i displaystyle d Gamma X t Y i pri t 0 displaystyle t to 0 ye rivnimi Y i m displaystyle Y i m a granicya T G X t displaystyle T Gamma X t ye rivnoyu T m displaystyle T m Okrim togo lim t 0 d G X t Y i Y i G X t t lim t 0 d G X t Y i d G X t 1 Y i t m lim t 0 d G X t X Y i m displaystyle lim t to 0 frac d Gamma X t Y i Y i Gamma X t t lim t to 0 d Gamma X t left frac Y i d Gamma X t 1 Y i t right m lim t to 0 d Gamma X t X Y i m de ostannya rivnist viplivaye iz vkazanoyi vishe vlastivosti dlya duzhki Li Oskilki d G X 0 displaystyle d Gamma X 0 ye odinichnim peretvorennyam a d G X t displaystyle d Gamma X t ye neperervnoyu po sukupnosti usih argumentiv to ostatochno lim t 0 d G X t Y i Y i G X t t X Y i m displaystyle lim t to 0 frac d Gamma X t Y i Y i Gamma X t t X Y i m Razom oderzhuyetsya viraz dlya pohidnoyi Li Zokrema dlya 1 formi a displaystyle alpha zvidsi vidrazu viplivaye sho L X a Y X a Y a X Y displaystyle mathcal L X alpha Y X alpha Y alpha X Y Dlya zagalnogo tenzora dovedennya analogichne lishe zastosovuyetsya bilsh zagalna rivnist f T a 1 a q Y 1 Y p m T f 1 a 1 f 1 a q d f Y 1 d f Y p f m displaystyle varphi T alpha 1 ldots alpha q Y 1 ldots Y p m T varphi 1 alpha 1 ldots varphi 1 alpha q d varphi Y 1 ldots d varphi Y p varphi m Pislya cogo yak i vishe rozpisuyetsya suma i vikoristovuyutsya vkazani vishe vlastivosti dlya vektoriv i 1 form V porivnyanni iz poperednim chastkovim vipadkom yedinoyu principovoyu vidminnistyu ye te sho potribno znajti granicyu lim t 0 G X t 1 a i a i G X t t displaystyle lim t to 0 frac Gamma X t 1 alpha i alpha i Gamma X t t Iz dovedenogo vishe a takozh vlastivostej G X t 1 displaystyle Gamma X t 1 oderzhuyetsya sho lim t 0 G X t 1 a i a i G X t t L X a displaystyle lim t to 0 frac Gamma X t 1 alpha i alpha i Gamma X t t mathcal L X alpha V inshomu dovedennya analogichne do poperednogo Viraz u koordinatahL 3 f 3 k k f displaystyle mathcal L xi f xi k partial k f de f displaystyle f skalyar L 3 y 3 k k y i y k k 3 i displaystyle mathcal L xi y xi k partial k y i y k partial k xi i de y displaystyle y vektor a y i displaystyle y i jogo komponenti L 3 w 3 k k w i w k i 3 k displaystyle mathcal L xi omega xi k partial k omega i omega k partial i xi k de w displaystyle omega 1 forma a w i displaystyle omega i yiyi komponenti L 3 g 3 k k g i j i 3 k g k j j 3 k g i k displaystyle mathcal L xi g xi k partial k g ij partial i xi k g kj partial j xi k g ik de g displaystyle g 2 forma metrika a g i j displaystyle g ij yiyi komponenti Pohidna Li dlya tenzornogo polya u negolonomnomu reperiNehaj tenzorne pole K tipu p q zadano v negolonomnomu reperi e a displaystyle e alpha todi jogo pohidna Li vzdovzh vektornogo polya H zadayetsya nastupnoyu formuloyu L X K b a X K b a K b a P displaystyle mathcal L X K beta alpha XK beta alpha K beta alpha P de a a 1 a p b b 1 b q displaystyle alpha alpha 1 alpha p beta beta 1 beta q i vvedeni nastupni poznachennya K b a P s 1 p K b a 1 s a p P s a s s 1 q K b 1 s b q a P b s s displaystyle K beta alpha P sum s 1 p K beta alpha 1 sigma alpha p P sigma alpha s sum s 1 q K beta 1 sigma beta q alpha P beta s sigma P b a e b 3 a R s b a 3 s displaystyle P beta alpha e beta xi alpha R sigma beta alpha xi sigma R a b s e s e a e b displaystyle R alpha beta sigma e sigma e alpha e beta ob yekt negolonomnosti VlastivostiL X s displaystyle mathcal L X s R displaystyle mathbb R linijno za X displaystyle X i za s displaystyle s Tut s displaystyle s dovilne tenzorne pole Pohidna Li diferenciyuvannya na kilci tenzornih poliv Na zovnishnih form pohidna Li ye diferenciyuvannyam i odnoridnim operatorom stupenya 0 Nehaj v displaystyle v i u displaystyle u vektorni polya na mnogovidi todi L v L u L v L u L u L v displaystyle mathcal L v mathcal L u mathcal L v mathcal L u mathcal L u mathcal L v ye diferenciyuvannyam algebri C M displaystyle C infty M tomu isnuye vektorne pole v u displaystyle v u sho nazivayetsya duzhkoyu Li vektornih poliv takozh duzhka Puassona abo komutator dlya yakogo L v u L v L u displaystyle mathcal L v u mathcal L v mathcal L u Formula gomotopiyi L v i v d d i v displaystyle mathcal L v i v d di v Tut i v displaystyle i v operator vnutrishnogo diferenciyuvannya form i v w X 1 X k 1 w v X 1 X k 1 displaystyle i v omega X 1 dots X k 1 omega v X 1 dots X k 1 Yak naslidok L X d w d L X w w L M displaystyle mathcal L X d omega d mathcal L X omega omega in Lambda M L X s v p r F T s X X F s displaystyle mathcal L X s mathop vpr F Ts circ X X F circ s Tut s displaystyle s gladkij peretin prirodnogo vektornogo rozsharuvannya F displaystyle F napriklad bud yake tenzorne pole X F displaystyle X F pidnyattya vektornogo polya X displaystyle X na F displaystyle F v p r F displaystyle mathop vpr F operator vertikalnogo proektuvannya na F displaystyle F Div takozhDuzhka Li vektornih polivLiteraturaSh Kobayasi K Nomidzu Osnovy differencialnoj geometrii 1981 T 1 344 s Dubrovin B A Novikov S P Fomenko A T Sovremennaya geometriya Metody i prilozheniya 2 e pererab M Nauka 1986 T 1 760 s Ivan Kolar Peter W Michor Jan Slovak Natural operations in differential geometry 1 e izd Springer 1993 434 s ISBN 978 3540562351 Morita Shigeyuki 2001 Geometry of Differential Forms Translations of mathematical monographs t 201 AMS ISBN 0 8218 1045 6
Топ