У статистиці, ме́тоди Мо́нте-Ка́рло ма́рковських ланцюгі́в (МКМЛ, англ. Markov Chain Monte Carlo, MCMC) — це клас алгоритмів для вибірки з розподілу ймовірностей на базі побудови такого ланцюга Маркова, що має бажаний розподіл як свій (рівноважний розподіл). Тоді стан цього ланцюга після якогось числа кроків використовується як вибірка з бажаного розподілу. Якість вибірки покращується як функція від кількості кроків.
Ме́тоди Мо́нте-Ка́рло випадко́вого блука́ння складають великий підклас методів МКМЛ.
Області застосування
- Методи МКМЛ здебільшого застосовуються для обчислення чисельних наближень багатовимірних інтегралів, наприклад, у баєсовій статистиці, обчислювальній фізиці, обчислювальній біології та обчислювальній лінгвістиці.
- У баєсовій статистиці нещодавні розробки методів МКМЛ стали ключовим кроком в уможливленні обчислення великих ієрархічних моделей, що вимагають інтеграції над сотнями або навіть тисячами невідомих параметрів.
- Їх також застосовують для генерування вибірок, що поступово покривають зону рідкісного збою у [en].
Класифікація
Методи Монте-Карло випадкового блукання
Багатовимірні інтеграли
Коли методи МКМЛ застосовуються для наближення багатовимірних інтегралів, то всюди випадково рухається ансамбль ходаків. У кожній точці, де ступає ходак, до інтегралу зараховується значення підінтегрального в цій точці. Потім ходак може зробити якусь кількість пробних кроків цією зоною, шукаючи місця з прийнятно високим внеском до інтегралу, щоби рухатися туди далі.
Методи Монте-Карло випадкового блукання є різновидом випадкового моделювання, або методу Монте-Карло. Проте, тоді як випадкові вибірки, що використовуються у звичайному [en], є статистично незалежними, ті, що використовуються у методах МКМЛ, є корельованими. Ланцюг Маркова будується таким чином, щоби мати підінтегральне як свій (рівноважний розподіл).
Приклади
Приклади методів Монте-Карло випадкового блукання включають наступні:
- Алгоритм Метрополіса — Гастінгса: Цей метод породжує випадкове блукання із застосуванням густини пропозиції та методу відкидання деяких із запропонованих рухів.
- [en]: Цей метод вимагає, щоби було точно вказано вибірки з усіх умовних розподілів цільового розподілу. Він є популярним зокрема тому, що не вимагає жодного «регулювання».
- [en]: Цей метод залежить від того принципу, що можна робити вибірку з розподілу шляхом рівномірної вибірки з області під графіком функції його густини. Він чергує рівномірну вибірку у вертикальному напрямку з рівномірною вибіркою з горизонтального «рівня», визначеного поточною вертикальною позицією.
- [en]: Цей метод є варіацією алгоритму Метрополіса — Гастінгса, що дозволяє багаторазові спроби у кожній точці. Дозволяючи робити більші кроки на кожній ітерації, він допомагає розв'язувати прокляття розмірності.
- [en]: Цей метод є варіацією алгоритму Метрополіса — Гастінгса, що дозволяє пропозиції, які змінюють розмірність простору. Методи МКМЛ, що змінюють розмірність, тривалий час застосовуватися у статистичній фізиці, де для деяких задач використовується розподіл, що є великим канонічним ансамблем (наприклад, коли кількість молекул у коробці є змінною). Але реверсивно-стрибковий варіант є корисним при виконанні МКМЛ або вибірки за Ґіббсом над [en] баєсовими моделями, такими як пов'язані з [en] чи [en], де кількість змішуваних складових/кластерів/тощо автоматично виводиться з даних.
Інші методи МКМЛ
Цей розділ потребує доповнення. (серпень 2015) |
Взаємодійні методології МКМЛ є класом [en] для отримання випадкових виборок із послідовності розподілів ймовірності зі зростаючим рівнем складності вибірки. Ці ймовірнісні моделі включають моделі простору шляху зі збільшуваним часовим горизонтом, апостеріорними розподілами відносно послідовності часткових спостережень, збільшуваними наборами рівнів обмежень для умовних розподілів, зменшуваними графіками температури, пов'язаними з деякими розподілами Больцмана — Ґіббса, та багато інших. У принципі, будь-який відбірник МКМЛ може бути перетворено на взаємодійний відбірник МКМЛ. Ці взаємодійні відбірники МКМЛ може бути інтерпретовано як спосіб паралельного виконання відбірників МКМЛ. Наприклад, взаємодійні імітаційні алгоритми ренатурації базуються на незалежних кроках Метрополіса — Гастінгса, що послідовно взаємодіють з механізмом типу вибору/повторного взяття вибірки. На відміну від традиційних методів МКМЛ, параметр точності цього класу взаємодійних відбірників МКМЛ стосується лише кількості відбірників МКМЛ, що взаємодіють. Ці передові частинкові методології належать до класу частинкових моделей Фейнмана-Каца, що у спільнотах баєсового висновування та обробки сигналів називаються також [en], або [en]. Взаємодійні методи МКМЛ також може бути інтерпретовано як генетичні частинкові алгоритми мутації-відбору з мутаціями МКМЛ.
(КМКМЛ, англ. Markov Chain quasi-Monte Carlo, MCQMC). Перевага використання послідовностей з низькою розбіжністю замість випадкових чисел для простої незалежної вибірки Монте-Карло добре відома. Ця процедура, відома як метод квазі-Монте-Карло (КМК, англ. Quasi-Monte Carlo method, QMC), відповідно до [en] дає інтеграційну помилку, що спадає значно швидше, ніж отримувана за допомогою вибірки НОР. Емпірично це дозволяє зменшувати як помилку оцінки, так і тривалість збіжності, на порядок величини.[]
Зменшення кореляції
Вдосконаленіші методи використовують різні шляхи зменшення кореляції між сусідніми елементами вибірки. Ці алгоритми можуть бути складнішими для втілення, проте вони зазвичай демонструють швидшу збіжність (тобто, досягнення точного результату за меншу кількість кроків).
Приклади
Приклади методів МКМЛ не випадкового блукання включають наступне:
- [en] (ГМК, англ. Hybrid Monte Carlo, HMC): Намагається уникнути поведінки випадкового блукання за допомогою введення додаткового вектора імпульсу та реалізації гамільтонової динаміки, так, що функція потенціальної енергії є цільовою густиною. Імпульсні елементи вибірки відкидаються після вибірки. Кінцевим результатом гібридного алгоритму Монте-Карло є те, що пропозиції рухаються простором вибірки більшими кроками; вони відтак є менш корельованими, та швидше згортаються до цільового розподілу.
- Деякі варіації вибірки за рівнями також уникають випадкового блукання.
- МКМЛ Ланжевена, та інші методи, що покладаються на градієнт (та, можливо, другу похідну) логарифму апостеріорного, уникають випадкового блукання, роблячи пропозиції, що правдоподібніше знаходяться в напрямку вищої густини ймовірності.
Збіжність
Цей розділ не містить . (серпень 2015) |
Побудувати ланцюг Маркова із потрібними властивостями зазвичай нескладно. Складнішою задачею є визначити, скільки кроків потрібно для згортки до стаціонарного розподілу із прийнятною помилкою. Добрий ланцюг матиме [en]: стаціонарний розподіл досягається швидко при старті з довільного положення.
Типова вибірка МКМЛ може лише наближувати цільовий розподіл, оскільки завжди залишається якийсь залишковий вплив початкового положення. Вдосконаленіші алгоритми на базі МКМЛ, такі як [en], можуть видавати точні вибірки ціною додаткових обчислень та необмеженого (хоча й очікувано скінченного) часу виконання.
Багато методів Монте-Карло випадкового блукання рухаються навколо рівноважного розподілу відносно малими кроками, без тенденції до того, щоби кроки просувалися в одному напрямку. Ці методи є легкими для втілення та аналізу, але, на жаль, дослідження ходаком усього простору може забирати багато часу. Ходак часто повертатиметься, і повторно досліджуватиме вже досліджену місцевість.
Див. також
- Баєсове висновування
- Баєсова мережа
- [en]
- [en]
- Метод квазі-Монте-Карло
- [en]
- Алгоритм Метрополіса — Гастінгса
- [en]
- [en]
- [en]
- [en]
Примітки
- Gill, 2008.
- Robert та Casella, 2004.
- Banerjee, Sudipto; Carlin, Bradley P.; Gelfand, Alan P. Hierarchical Modeling and Analysis for Spatial Data (вид. Second Edition). CRC Press. с. xix. ISBN . (англ.)
- Green, 1995.
- Del Moral, Pierre (2013). . Chapman & Hall/CRC Press. с. 626. Архів оригіналу за 8 червня 2015. Процитовано 5 серпня 2015.
Monographs on Statistics & Applied Probability
(англ.) - Del Moral, Pierre (2004). Feynman-Kac formulae. Genealogical and interacting particle approximations. Springer. с. 575.
Series: Probability and Applications
(англ.) - Del Moral, Pierre; Miclo, Laurent (2000). Branching and Interacting Particle Systems Approximations of Feynman-Kac Formulae with Applications to Non-Linear Filtering (PDF). Т. 1729. с. 1—145. doi:10.1007/bfb0103798.
{{}}
: Проігноровано|journal=
() (англ.) - . onlinelibrary.wiley.com. Архів оригіналу за 6 вересня 2015. Процитовано 11 червня 2015. (англ.)
- Chen, S., Josef Dick, and Art B. Owen. «Consistency of Markov chain quasi-Monte Carlo on continuous state spaces.» The Annals of Statistics 39.2 (2011): 673—701. (англ.)
- Tribble, Seth D. Markov chain Monte Carlo algorithms using completely uniformly distributed driving sequences. Diss. Stanford University, 2007. (англ.)
- Papageorgiou, Anargyros, and J. F. Traub. «Beating Monte Carlo.» Risk 9.6 (1996): 63-65. (англ.)
- Sobol, Ilya M. «On quasi-monte carlo integrations.» Mathematics and Computers in Simulation 47.2 (1998): 103—112. (англ.)
- Neal, 2003.
- Stramer та Tweedie, 1999.
Джерела
- Christophe Andrieu, Nando De Freitas and Arnaud Doucet, An Introduction to MCMC for Machine Learning, 2003 (англ.)
- Asmussen, Søren; Glynn, Peter W. (2007). Stochastic Simulation: Algorithms and Analysis. Stochastic Modelling and Applied Probability. Т. 57. Springer. (англ.)
- Atzberger, P. An Introduction to Monte-Carlo Methods (PDF). (англ.)
- (2004). Markov Chain Monte Carlo Simulations and Their Statistical Analysis. World Scientific. (англ.)
- Bolstad, William M. (2010). Understanding Computational Bayesian Statistics. Wiley. ISBN . (англ.)
- Casella, George; George, Edward I. (1992). Explaining the Gibbs sampler. [en]. 46: 167—174. doi:10.2307/2685208. (Basic summary and many references.) (англ.)
- Gelfand, A.E.; Smith, A.F.M. (1990). Sampling-Based Approaches to Calculating Marginal Densities. [en]. 85: 398—409. doi:10.1080/01621459.1990.10476213. (англ.)
- ; Carlin, John B.; Stern, Hal S.; (1995). Bayesian Data Analysis (вид. 1st). . (See Chapter 11.) (англ.)
- Geman, S.; (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. [en]. 6: 721—741. (англ.)
- Gilks, W.R.; Richardson, S.; (1996). Markov Chain Monte Carlo in Practice. /CRC. (англ.)
- Gill, Jeff (2008). Bayesian methods: a social and behavioral sciences approach (вид. 2nd). /CRC. ISBN . (англ.)
- Green, P.J. (1995). Reversible-jump Markov chain Monte Carlo computation and Bayesian model determination. [en]. 82 (4): 711—732. doi:10.1093/biomet/82.4.711. (англ.)
- Neal, Radford M. (2003). Slice Sampling. [en]. 31 (3): 705—767. doi:10.1214/aos/1056562461. JSTOR 3448413. (англ.)
- Neal, Radford M. (1993). Probabilistic Inference Using Markov Chain Monte Carlo Methods. (англ.)
- Robert, Christian P.; Casella, G. (2004). Monte Carlo Statistical Methods (вид. 2nd). Springer. ISBN . (англ.)
- Rubinstein, R.Y.; Kroese, D.P. (2007). Simulation and the Monte Carlo Method (вид. 2nd). . ISBN . (англ.)
- Smith, R.L. (1984). Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed Over Bounded Regions. [en]. 32: 1296—1308. doi:10.1287/opre.32.6.1296. (англ.)
- Spall, J.C. (April 2003). Estimation via Markov Chain Monte Carlo. IEEE Control Systems Magazine. 23 (2): 34—45. doi:10.1109/mcs.2003.1188770. (англ.)
- Stramer, O.; Tweedie, R. (1999). Langevin-Type Models II: Self-Targeting Candidates for MCMC Algorithms. Methodology and Computing in Applied Probability. 1 (3): 307—328. doi:10.1023/A:1010090512027. (англ.)
Література
- (April 2009). The Markov chain Monte Carlo revolution (PDF). Bull. Amer. Math. Soc. 46 (2): 179—205. doi:10.1090/s0273-0979-08-01238-x. S 0273-0979(08)01238-X. (англ.)
- ; ; Vetterling, W.T.; Flannery, B.P. (2007), Section 15.8. Markov Chain Monte Carlo, Numerical Recipes: The Art of Scientific Computing (вид. 3rd), Cambridge University Press, ISBN (англ.)
- Richey, Matthew (May 2010). The Evolution of Markov Chain Monte Carlo Methods (PDF). The American Mathematical Monthly. 117 (5): 383—413. doi:10.4169/000298910x485923. (англ.)
Посилання
- , Alexander Mantzaris (первинне посилання — тепер недійсне) (англ.)
- Інтерактивні методології Метрополіса–Гастінгса
- Візуальна демонстрація методів вибірки МКМЛ (аплет Java), Laird Breyer (англ.)
- Іграшковий приклад вибірки МКМЛ для Matlab, Zhiyuan Weng
- MCL — марковський алгоритм кластеризації для графів, Stijn van Dongen (англ.)
- PyMC — модуль Python, що реалізує моделі та алгоритми підгонки баєсової статистики, включно з методом Монте-Карло марковських ланцюгів. (англ.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
U statistici me todi Mo nte Ka rlo ma rkovskih lancyugi v MKML angl Markov Chain Monte Carlo MCMC ce klas algoritmiv dlya vibirki z rozpodilu jmovirnostej na bazi pobudovi takogo lancyuga Markova sho maye bazhanij rozpodil yak svij rivnovazhnij rozpodil Todi stan cogo lancyuga pislya yakogos chisla krokiv vikoristovuyetsya yak vibirka z bazhanogo rozpodilu Yakist vibirki pokrashuyetsya yak funkciya vid kilkosti krokiv Zbizhnist algoritmu Metropolisa Gastingsa MKML namagayetsya aproksimuvati sinij rozpodil pomaranchevim Me todi Mo nte Ka rlo vipadko vogo bluka nnya skladayut velikij pidklas metodiv MKML Oblasti zastosuvannyaMetodi MKML zdebilshogo zastosovuyutsya dlya obchislennya chiselnih nablizhen bagatovimirnih integraliv napriklad u bayesovij statistici obchislyuvalnij fizici obchislyuvalnij biologiyi ta obchislyuvalnij lingvistici U bayesovij statistici neshodavni rozrobki metodiv MKML stali klyuchovim krokom v umozhlivlenni obchislennya velikih iyerarhichnih modelej sho vimagayut integraciyi nad sotnyami abo navit tisyachami nevidomih parametriv Yih takozh zastosovuyut dlya generuvannya vibirok sho postupovo pokrivayut zonu ridkisnogo zboyu u en KlasifikaciyaMetodi Monte Karlo vipadkovogo blukannya Div takozh Vipadkove blukannya Bagatovimirni integrali Koli metodi MKML zastosovuyutsya dlya nablizhennya bagatovimirnih integraliv to vsyudi vipadkovo ruhayetsya ansambl hodakiv U kozhnij tochci de stupaye hodak do integralu zarahovuyetsya znachennya pidintegralnogo v cij tochci Potim hodak mozhe zrobiti yakus kilkist probnih krokiv ciyeyu zonoyu shukayuchi miscya z prijnyatno visokim vneskom do integralu shobi ruhatisya tudi dali Metodi Monte Karlo vipadkovogo blukannya ye riznovidom vipadkovogo modelyuvannya abo metodu Monte Karlo Prote todi yak vipadkovi vibirki sho vikoristovuyutsya u zvichajnomu en ye statistichno nezalezhnimi ti sho vikoristovuyutsya u metodah MKML ye korelovanimi Lancyug Markova buduyetsya takim chinom shobi mati pidintegralne yak svij rivnovazhnij rozpodil Prikladi Prikladi metodiv Monte Karlo vipadkovogo blukannya vklyuchayut nastupni Algoritm Metropolisa Gastingsa Cej metod porodzhuye vipadkove blukannya iz zastosuvannyam gustini propoziciyi ta metodu vidkidannya deyakih iz zaproponovanih ruhiv en Cej metod vimagaye shobi bulo tochno vkazano vibirki z usih umovnih rozpodiliv cilovogo rozpodilu Vin ye populyarnim zokrema tomu sho ne vimagaye zhodnogo regulyuvannya en Cej metod zalezhit vid togo principu sho mozhna robiti vibirku z rozpodilu shlyahom rivnomirnoyi vibirki z oblasti pid grafikom funkciyi jogo gustini Vin cherguye rivnomirnu vibirku u vertikalnomu napryamku z rivnomirnoyu vibirkoyu z gorizontalnogo rivnya viznachenogo potochnoyu vertikalnoyu poziciyeyu en Cej metod ye variaciyeyu algoritmu Metropolisa Gastingsa sho dozvolyaye bagatorazovi sprobi u kozhnij tochci Dozvolyayuchi robiti bilshi kroki na kozhnij iteraciyi vin dopomagaye rozv yazuvati proklyattya rozmirnosti en Cej metod ye variaciyeyu algoritmu Metropolisa Gastingsa sho dozvolyaye propoziciyi yaki zminyuyut rozmirnist prostoru Metodi MKML sho zminyuyut rozmirnist trivalij chas zastosovuvatisya u statistichnij fizici de dlya deyakih zadach vikoristovuyetsya rozpodil sho ye velikim kanonichnim ansamblem napriklad koli kilkist molekul u korobci ye zminnoyu Ale reversivno stribkovij variant ye korisnim pri vikonanni MKML abo vibirki za Gibbsom nad en bayesovimi modelyami takimi yak pov yazani z en chi en de kilkist zmishuvanih skladovih klasteriv tosho avtomatichno vivoditsya z danih Inshi metodi MKML Cej rozdil potrebuye dopovnennya serpen 2015 Vzayemodijni metodologiyi MKML ye klasom en dlya otrimannya vipadkovih viborok iz poslidovnosti rozpodiliv jmovirnosti zi zrostayuchim rivnem skladnosti vibirki Ci jmovirnisni modeli vklyuchayut modeli prostoru shlyahu zi zbilshuvanim chasovim gorizontom aposteriornimi rozpodilami vidnosno poslidovnosti chastkovih sposterezhen zbilshuvanimi naborami rivniv obmezhen dlya umovnih rozpodiliv zmenshuvanimi grafikami temperaturi pov yazanimi z deyakimi rozpodilami Bolcmana Gibbsa ta bagato inshih U principi bud yakij vidbirnik MKML mozhe buti peretvoreno na vzayemodijnij vidbirnik MKML Ci vzayemodijni vidbirniki MKML mozhe buti interpretovano yak sposib paralelnogo vikonannya vidbirnikiv MKML Napriklad vzayemodijni imitacijni algoritmi renaturaciyi bazuyutsya na nezalezhnih krokah Metropolisa Gastingsa sho poslidovno vzayemodiyut z mehanizmom tipu viboru povtornogo vzyattya vibirki Na vidminu vid tradicijnih metodiv MKML parametr tochnosti cogo klasu vzayemodijnih vidbirnikiv MKML stosuyetsya lishe kilkosti vidbirnikiv MKML sho vzayemodiyut Ci peredovi chastinkovi metodologiyi nalezhat do klasu chastinkovih modelej Fejnmana Kaca sho u spilnotah bayesovogo visnovuvannya ta obrobki signaliv nazivayutsya takozh en abo en Vzayemodijni metodi MKML takozh mozhe buti interpretovano yak genetichni chastinkovi algoritmi mutaciyi vidboru z mutaciyami MKML KMKML angl Markov Chain quasi Monte Carlo MCQMC Perevaga vikoristannya poslidovnostej z nizkoyu rozbizhnistyu zamist vipadkovih chisel dlya prostoyi nezalezhnoyi vibirki Monte Karlo dobre vidoma Cya procedura vidoma yak metod kvazi Monte Karlo KMK angl Quasi Monte Carlo method QMC vidpovidno do en daye integracijnu pomilku sho spadaye znachno shvidshe nizh otrimuvana za dopomogoyu vibirki NOR Empirichno ce dozvolyaye zmenshuvati yak pomilku ocinki tak i trivalist zbizhnosti na poryadok velichini dzherelo Zmenshennya korelyaciyi Vdoskonalenishi metodi vikoristovuyut rizni shlyahi zmenshennya korelyaciyi mizh susidnimi elementami vibirki Ci algoritmi mozhut buti skladnishimi dlya vtilennya prote voni zazvichaj demonstruyut shvidshu zbizhnist tobto dosyagnennya tochnogo rezultatu za menshu kilkist krokiv Prikladi Prikladi metodiv MKML ne vipadkovogo blukannya vklyuchayut nastupne en GMK angl Hybrid Monte Carlo HMC Namagayetsya uniknuti povedinki vipadkovogo blukannya za dopomogoyu vvedennya dodatkovogo vektora impulsu ta realizaciyi gamiltonovoyi dinamiki tak sho funkciya potencialnoyi energiyi ye cilovoyu gustinoyu Impulsni elementi vibirki vidkidayutsya pislya vibirki Kincevim rezultatom gibridnogo algoritmu Monte Karlo ye te sho propoziciyi ruhayutsya prostorom vibirki bilshimi krokami voni vidtak ye mensh korelovanimi ta shvidshe zgortayutsya do cilovogo rozpodilu Deyaki variaciyi vibirki za rivnyami takozh unikayut vipadkovogo blukannya MKML Lanzhevena ta inshi metodi sho pokladayutsya na gradiyent ta mozhlivo drugu pohidnu logarifmu aposteriornogo unikayut vipadkovogo blukannya roblyachi propoziciyi sho pravdopodibnishe znahodyatsya v napryamku vishoyi gustini jmovirnosti ZbizhnistCej rozdil ne mistit posilan na dzherela Vi mozhete dopomogti polipshiti cej rozdil dodavshi posilannya na nadijni avtoritetni dzherela Material bez dzherel mozhe buti piddano sumnivu ta vilucheno serpen 2015 Pobuduvati lancyug Markova iz potribnimi vlastivostyami zazvichaj neskladno Skladnishoyu zadacheyu ye viznachiti skilki krokiv potribno dlya zgortki do stacionarnogo rozpodilu iz prijnyatnoyu pomilkoyu Dobrij lancyug matime en stacionarnij rozpodil dosyagayetsya shvidko pri starti z dovilnogo polozhennya Tipova vibirka MKML mozhe lishe nablizhuvati cilovij rozpodil oskilki zavzhdi zalishayetsya yakijs zalishkovij vpliv pochatkovogo polozhennya Vdoskonalenishi algoritmi na bazi MKML taki yak en mozhut vidavati tochni vibirki cinoyu dodatkovih obchislen ta neobmezhenogo hocha j ochikuvano skinchennogo chasu vikonannya Bagato metodiv Monte Karlo vipadkovogo blukannya ruhayutsya navkolo rivnovazhnogo rozpodilu vidnosno malimi krokami bez tendenciyi do togo shobi kroki prosuvalisya v odnomu napryamku Ci metodi ye legkimi dlya vtilennya ta analizu ale na zhal doslidzhennya hodakom usogo prostoru mozhe zabirati bagato chasu Hodak chasto povertatimetsya i povtorno doslidzhuvatime vzhe doslidzhenu miscevist Div takozhBayesove visnovuvannya Bayesova merezha en en Metod kvazi Monte Karlo en Algoritm Metropolisa Gastingsa en en en en PrimitkiGill 2008 Robert ta Casella 2004 Banerjee Sudipto Carlin Bradley P Gelfand Alan P Hierarchical Modeling and Analysis for Spatial Data vid Second Edition CRC Press s xix ISBN 978 1 4398 1917 3 angl Green 1995 Del Moral Pierre 2013 Chapman amp Hall CRC Press s 626 Arhiv originalu za 8 chervnya 2015 Procitovano 5 serpnya 2015 Monographs on Statistics amp Applied Probability angl Del Moral Pierre 2004 Feynman Kac formulae Genealogical and interacting particle approximations Springer s 575 Series Probability and Applications angl Del Moral Pierre Miclo Laurent 2000 Branching and Interacting Particle Systems Approximations of Feynman Kac Formulae with Applications to Non Linear Filtering PDF T 1729 s 1 145 doi 10 1007 bfb0103798 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite book title Shablon Cite book cite book a Proignorovano journal dovidka angl onlinelibrary wiley com Arhiv originalu za 6 veresnya 2015 Procitovano 11 chervnya 2015 angl Chen S Josef Dick and Art B Owen Consistency of Markov chain quasi Monte Carlo on continuous state spaces The Annals of Statistics 39 2 2011 673 701 angl Tribble Seth D Markov chain Monte Carlo algorithms using completely uniformly distributed driving sequences Diss Stanford University 2007 angl Papageorgiou Anargyros and J F Traub Beating Monte Carlo Risk 9 6 1996 63 65 angl Sobol Ilya M On quasi monte carlo integrations Mathematics and Computers in Simulation 47 2 1998 103 112 angl Neal 2003 Stramer ta Tweedie 1999 DzherelaChristophe Andrieu Nando De Freitas and Arnaud Doucet An Introduction to MCMC for Machine Learning 2003 angl Asmussen Soren Glynn Peter W 2007 Stochastic Simulation Algorithms and Analysis Stochastic Modelling and Applied Probability T 57 Springer angl Atzberger P An Introduction to Monte Carlo Methods PDF angl 2004 Markov Chain Monte Carlo Simulations and Their Statistical Analysis World Scientific angl Bolstad William M 2010 Understanding Computational Bayesian Statistics Wiley ISBN 0 470 04609 0 angl Casella George George Edward I 1992 Explaining the Gibbs sampler en 46 167 174 doi 10 2307 2685208 Basic summary and many references angl Gelfand A E Smith A F M 1990 Sampling Based Approaches to Calculating Marginal Densities en 85 398 409 doi 10 1080 01621459 1990 10476213 angl Carlin John B Stern Hal S 1995 Bayesian Data Analysis vid 1st Chapman amp Hall See Chapter 11 angl Geman S 1984 Stochastic Relaxation Gibbs Distributions and the Bayesian Restoration of Images en 6 721 741 angl Gilks W R Richardson S 1996 Markov Chain Monte Carlo in Practice Chapman amp Hall CRC angl Gill Jeff 2008 Bayesian methods a social and behavioral sciences approach vid 2nd Chapman amp Hall CRC ISBN 1 58488 562 9 angl Green P J 1995 Reversible jump Markov chain Monte Carlo computation and Bayesian model determination en 82 4 711 732 doi 10 1093 biomet 82 4 711 angl Neal Radford M 2003 Slice Sampling en 31 3 705 767 doi 10 1214 aos 1056562461 JSTOR 3448413 angl Neal Radford M 1993 Probabilistic Inference Using Markov Chain Monte Carlo Methods angl Robert Christian P Casella G 2004 Monte Carlo Statistical Methods vid 2nd Springer ISBN 0 387 21239 6 angl Rubinstein R Y Kroese D P 2007 Simulation and the Monte Carlo Method vid 2nd Wiley ISBN 978 0 470 17794 5 angl Smith R L 1984 Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed Over Bounded Regions en 32 1296 1308 doi 10 1287 opre 32 6 1296 angl Spall J C April 2003 Estimation via Markov Chain Monte Carlo IEEE Control Systems Magazine 23 2 34 45 doi 10 1109 mcs 2003 1188770 angl Stramer O Tweedie R 1999 Langevin Type Models II Self Targeting Candidates for MCMC Algorithms Methodology and Computing in Applied Probability 1 3 307 328 doi 10 1023 A 1010090512027 angl Literatura April 2009 The Markov chain Monte Carlo revolution PDF Bull Amer Math Soc 46 2 179 205 doi 10 1090 s0273 0979 08 01238 x S 0273 0979 08 01238 X angl Vetterling W T Flannery B P 2007 Section 15 8 Markov Chain Monte Carlo Numerical Recipes The Art of Scientific Computing vid 3rd Cambridge University Press ISBN 978 0 521 88068 8 angl Richey Matthew May 2010 The Evolution of Markov Chain Monte Carlo Methods PDF The American Mathematical Monthly 117 5 383 413 doi 10 4169 000298910x485923 angl Posilannya Alexander Mantzaris pervinne posilannya teper nedijsne angl Interaktivni metodologiyi Metropolisa Gastingsa Vizualna demonstraciya metodiv vibirki MKML aplet Java Laird Breyer angl Igrashkovij priklad vibirki MKML dlya Matlab Zhiyuan Weng MCL markovskij algoritm klasterizaciyi dlya grafiv Stijn van Dongen angl PyMC modul Python sho realizuye modeli ta algoritmi pidgonki bayesovoyi statistiki vklyuchno z metodom Monte Karlo markovskih lancyugiv angl