Підтримка
www.wikidata.uk-ua.nina.az
Konfiguraciya pryamih abo rozbittya ploshini pryamimi ce rozbittya ploshini utvorene naborom pryamih Konfiguraciyi pryamih vivchaye kombinatorna geometriya a v obchislyuvalnij geometriyi buduyutsya algoritmi dlya efektivnoyi pobudovi konfiguracij Simplicijna konfiguraciya pryamih livoruch i prosta konfiguraciya pryamih pravoruch ViznachennyaDlya bud yakoyi mnozhini A pryamih na evklidovij ploshini mozhna viznachiti vidnoshennya ekvivalentnosti na tochkah ploshini za yakim dvi tochki p i q ekvivalentni yaksho dlya bud yakoyi pryamoyi l iz A abo p i q obidvi lezhat na pryamij l abo voni lezhat u tij samij vidkritij pivploshini obmezhenij pryamoyu l Yaksho A skinchenna abo lokalno skinchenna klasi ekvivalentnosti cih vidnoshen nalezhat trom grupam vnutrishnosti obmezhenih abo neobmezhenih opuklih mnogokutnikiv komirki rozbittya zv yazni komponenti pidmnozhini tochok ploshini sho ne mistyatsya na zhodnij iz pryamih iz A vidkriti vidrizki i vidkriti neskinchenni promeni rebra rozbittya zv yazni komponenti tochok okremoyi pryamoyi sho ne nalezhat niyakij inshij pryamij iz A okremi tochki vershini rozbittya peretin dvoh abo bilshe pryamih iz A Ci tri tipi ob yektiv z yednani razom utvoryuyut klitinne rozbittya sho pokrivaye ploshinu Kazhut sho dvi konfiguraciyi pryamih izomorfni abo kombinatorno ekvivalentni yaksho isnuye vidpovidnist mizh ob yektami v klitinnih rozbittyah yake odin do odnogo zberigaye sumizhnist Skladnist naborivVivchennya konfiguracij pryamih pochav Yakob Shtejner yakij doviv pershu mezhu najbilshogo chisla elementiv riznih tipiv yake mozhe mistiti konfiguraciya Konfiguraciya z n pryamih maye ne bilshe n n 1 2 vershin po odnij na paru peretinnih pryamih Cej maksimum dosyagayetsya na prostih konfiguraciyah Konfiguraciya nazivayetsya prostoyu yaksho 1 niyaki tri pryami ne peretinayutsya v odnij tochci 2 niyaki dvi pryami ne paralelni U bud yakij konfiguraciyi bude n neskinchennih spryamovanih vniz promeniv po odnomu na pryamu Ci promeni vidokremlyuyut n 1 komirok rozbittya neobmezhenih znizu Reshta komirok mayut yedinu najnizhchu vershinu i kozhna taka vershina ye nizhnoyu dlya yedinoyi komirki tak sho chislo komirok rozbittya dorivnyuye chislu vershin plyus n 1 abo ne perevishuye n n 1 2 1 div Centralni bagatokutni chisla Chislo reber rozbittya ne perevishuye n2 sho mozhna pobachiti abo za dopomogoyu ejlerovoyi harakteristiki pidstavivshi chislo vershin i komirok abo skoristavshis sposterezhennyam sho kozhnu pryamu rozdileno maksimum na n reber inshimi n 1 pryamimi Znovu girshim vipadkom na yakomu mezha dosyagayetsya ye prosti konfiguraciyi pryamih Zona pryamoyi l u nabori pryamih ce nabir komirok yaki mayut rebra sho lezhat na l Teorema pro zonu stverdzhuye sho povne chislo reber v oseredkah okremoyi zoni linijne Tochnishe povne chislo reber komirok iz zoni pryamoyi sho mistyatsya po odin bik vid pryamoyi l ne bilsh yak 5n 1 a povne chislo reber komirok sho lezhat po obidva boki vid l ne perevishuye 9 5 n 1 displaystyle lfloor 9 5n rfloor 1 Zagalnishe povna skladnist komirok rozbittya yaki peretinayutsya opukloyu krivoyu dorivnyuye O n a n de a poznachaye obernenu funkciyu Akkermana sho mozhna pokazati vihodyachi z en Pidsumovuyuchi skladnist usih zon mozhna viyaviti sho suma kvadrativ skladnostej komirok u rozbitti dorivnyuye O n2 en konfiguraciyi pryamih ce lamana utvorena rebrami yaki mayut rivno k inshih pryamih pid neyu tobto promin opushenij vniz vid rebra peretinaye rivno k pryamih a k riven ce vsi chastini konfiguraciyi pryamih sho mistyatsya pid k rivnem Znahodzhennya verhnoyi i nizhnoyi mezh skladnosti dlya k rivniv zalishayetsya golovnoyu vidkritoyu problemoyu diskretnoyi geometriyi Krashoyu verhnoyu mezheyu ye O nk1 3 todi yak krashoyu nizhnoyu W n exp c logk 1 2 Vidomo sho maksimalna skladnist k rivnya dorivnyuye 8 nk k riven ye okremim vipadkom monotonnogo shlyahu v rozbitti ploshini tobto poslidovnosti reber yaki peretinayut bud yaku vertikalnu pryamu v okremij tochci Odnak monotonni shlyahi mozhut buti skladnishimi nizh k rivni isnuyut nabori pryamih i monotonni shlyahi v cih naborah de chislo tochok na yakih shlyah zminyuye napryamok dorivnyuye W n2 o 1 Hocha okrema komirka v rozbitti mozhe buti obmezhena vsima n pryamimi nemozhlivo v zagalnomu vipadku shob m riznih komirok buli obmezheni n pryamimi Navpaki povna skladnist m komirok majzhe dorivnyuye 8 m2 3n2 3 n i majzhe taka zh mezha z yavlyayetsya v teoremi Semeredi Trottera pro incidenciyu tochok i pryamih na ploshini Proste dovedennya cogo faktu viplivaye z nerivnosti chisla peretiniv yaksho m komirok mayut zagalom x n reber mozhna stvoriti graf z m vershinami po odnij na komirku i x rebrami po odnomu na paru poslidovnih komirok na tij samij pryamij Rebra cogo grafa mozhna namalyuvati yak krivi yaki ne peretinayutsya vseredini komirok vidpovidnih kincevim vershinam reber a potim sliduyut po pryamih naboru Otzhe na comu malyunku ye O n2 peretiniv Odnak za nerivnistyu chisla peretiniv isnuye W x3 m2 peretiniv Shob vikonuvalisya obidvi nerivnosti x maye buti O m2 3n2 3 Proyektivni konfiguraciyi i proyektivna dvoyististChasto zruchno vivchati konfiguraciyu pryamih ne v evklidovomu prostori a na proyektivnij ploshini oskilki v proyektivnij geometriyi bud yaka para pryamih maye tochku peretinu Na proyektivnij ploshini mi ne mozhemo viznachiti rozbittya z vikoristannyam bokiv pryamih pryama na proyektivnij ploshini ne dilit ploshinu na dva rizni boki ale mi vse zh mozhemo viznachiti komirki rozbittya yak zv yazni komponenti tochok yaki ne lezhat na zhodnij pryamij Rebrami budut zv yazni komponenti sho skladayutsya z mnozhini tochok yaki nalezhat okremij pryamij a vershinami budut tochki de dvi abo bilshe pryamih peretinayutsya Nabir pryamih na proyektivnij ploshini vidriznyayetsya vid jogo evklidovogo dvijnika oskilki dva evklidovih promeni po obidva boki vid pryamoyi zaminyuyutsya odnim rebrom na proyektivnij ploshini a pari neobmezhenih evklidovih komirok zaminyuyutsya na proyektivnij ploshini v yedini komirki Z oglyadu na proyektivnu dvoyistist bagato tverdzhen pro kombinatorni vlastivosti tochok na ploshini mozhna legko zrozumiti v ekvivalentnij dvoyistij formi pro konfiguraciyi pryamih Napriklad teorema Silvestra yaka stverdzhuye sho bud yaka nekolinearna mnozhina tochok na ploshini maye prostu pryamu yaka mistit rivno dvi tochki peretvoryuyetsya za proyektivnoyu dvoyististyu na tverdzhennya sho bud yaka konfiguraciya pryamih yaka maye bilshe nizh odnu vershinu maye prostu tochku vershinu v yakij peretinayutsya vsogo dvi pryami Najranishe vidome dovedennya teoremi Silvestra Melhiorom Melchior 1940 vikoristovuye ejlerovu harakteristiku Trikutniki v naborah pryamihKonfiguraciyu pryamih u proyektivnij ploshini nazivayut simplicijnoyu yaksho bud yaka komirka rozbittya obmezhena rivno troma rebrami Simplicijni konfiguraciyi pershim vivchav Melhior Tri neskinchennih simejstva simplicijnih naboriv pryamih vidomi Majzhe puchok skladayetsya z n 1 pryamih sho prohodyat cherez odnu tochku i odniyeyi pryamoyi yaka cherez cyu tochku ne prohodit Simejstvo pryamih utvorenih storonami pravilnogo mnogokutnika razom z osyami simetriyi Storoni i osi simetriyi parnogo pravilnogo mnogokutnika razom iz pryamoyu na neskinchennosti Krim togo ye bagato inshih prikladiv odinichnih simplicijnih konfiguracij yaki ne vmishayutsya v yakes vidome neskinchenne simejstvo Yak pishe Gryunbaum simplicijni nabori pryamih z yavlyayutsya yak prikladi abo kontrprikladi v bagatoh kontekstah kombinatornoyi geometriyi i yiyi zastosuvan Napriklad Artye Gryunbaum i Llibre vikoristovuvali simplicijni nabori pryamih dlya pobudovi kontrprikladiv do gipotezi pro zv yazok mizh stepenyami naboru diferencialnih rivnyan i chislom invariantnih pryamih yaki rivnyannya mozhut mati Obidva vidomih kontrprikladi do gipotezi Diraka Mockina yaka stverdzhuye sho bud yaka konfiguraciya n pryamih maye shonajmenshe n 2 prostih tochok simplicijni Dvoyistim grafom konfiguraciyi pryamih u yakij isnuye odna vershina dlya komirki i odne rebro sho z yednuye vershini vidpovidni komirkam iz spilnim rebrom u konfiguraciyi ye chastkovij kub graf u yakomu vershini mozhna poznachiti bitovimi vektorami tak sho vidstan na grafi dorivnyuye vidstani Gemminga mizh poznachkami U razi konfiguracij pryamih kozhna koordinata nabuvaye znachennya 0 dlya reber po odin bik vid pryamoyi i 1 dlya reber po inshij bik Dvoyisti grafi simplicijnih konfiguracij vikoristovuvalisya dlya pobudovi neskinchennih simejstv 3 regulyarnih chastkovih kubiv izomorfnih grafam prostogo zonoedra Cikavo takozh vivchiti ekstremalni kilkosti trikutnih komirok u konfiguraciyi yaka ne obov yazkovo simplicijna U bud yakij konfiguraciyi maye buti shonajmenshe n trikutnikiv Bud yaka konfiguraciya sho maye tilki n trikutnikiv maye buti prostoyu Vidomo sho najbilshe mozhlive chislo trikutnikiv u prostij konfiguraciyi obmezhene zverhu chislom n n 1 3 a nizhnya mezha dorivnyuye n n 3 3 Nizhnya mezha dosyagayetsya na deyakih pidmnozhinah diagonalej pravilnogo 2n kutnika Dlya neprostih konfiguracij najbilshe chislo trikutnikiv shozhe ale silnishe obmezhene U tisno pov yazanij zadachi Kobona pro trikutniki zapituyetsya pro najbilshu kilkist neperekrivnih skinchennih trikutnikiv ne obov yazkovo granej u konfiguraciyi na evklidovij ploshini Dlya deyakih ale ne dlya vsih znachen n mozhlivo n n 2 3 trikutnikiv Multisitkovi mozayiki i mozayiki Penrouza en Dvoyistij graf prostoyi konfiguraciyi pryamih mozhna podati geometrichno yak nabir rombiv po odnomu na vershinu konfiguraciyi zi storonami perpendikulyarnimi do pryamih yaki peretinayutsya u vershini Ci rombi mozhna ob yednati z utvorennyam zamoshennya opuklogo mnogokutnika v razi konfiguraciyi skinchennogo chisla pryamih abo vsiyeyi ploshini v razi lokalno skinchennih konfiguracij z neskinchennim chislom pryamih De Brejn doslidzhuvav okremi vipadki ciyeyi pobudovi v yakih konfiguraciya pryamih skladayetsya z k mnozhin paralelnih pryamih z rivnim viddalennyam odna vid odnoyi Dlya dvoh perpendikulyarnih simejstv paralelnih pryamih cya pobudova daye kvadratnij parket na ploshini a dlya troh simejstv pryamih pid kutom 120 odne vidnosno odnogo sho formuyut pobudova daye Odnak dlya bilshogo chisla simejstv pryamih cya pobudova daye aperiodichni mozayiki Zokrema dlya p yati simejstv pryamih z rivnimi kutami odne vidnosno odnogo abo yak de Brejn nazivaye cyu konfiguraciyu pentagrida ce daye simejstvo zamoshen yake vklyuchaye rombichnu versiyu mozayik Penrouza ce neskinchenna konfiguraciya pryamih sho utvoryuye periodichne zamoshennya yake nagaduye multisitku z chotirma paralelnimi rodinami ale v yakij dva simejstva mayut bilshu vidstan mizh pryamimi nizh v inshih dvoh i v yakih nabir pryamih ye simplicijnim a ne prostim Dvoyistoyu mozayikoyu ye ru Podibnim chinom trikutnij parket ye neskinchennoyu simplicijnoyu konfiguraciyeyu pryamih z troma simejstvami paralelnih pryamih u yakij dvoyistoyu mozayikoyu ye shestikutnij parket a en ye neskinchennoyu simplicijnoyu konfiguraciyeyu pryamih iz shistma simejstvami paralelnih pryamih i dvoma vidstanyami mizh pryamimi v simejstvah yaka dvoyista en AlgoritmiKonstruyuvannya konfiguraciyi oznachaye obchislennya podannya vershin reber i komirok konfiguraciyi pryamih razom z yih vzayemozv yazkami pri zadanni spisku pryamih u nabori napriklad yak u dvozv yaznomu spisku reber Zgidno z teoremoyu pro zoni nabori mozhna pobuduvati efektivno za dopomogoyu inkrementnogo algoritmu yakij dodaye po odnij pryamij za krok do naboru pryamih dodanih na poperednih krokah kozhnu novu pryamu mozhna dodati za chas proporcijnij yiyi zoni sho v rezultati daye chas O n2 Odnak vimogi do pam yati v comu algoritmi visoki tak sho mozhe buti zruchnishim pererahuvannya vsih vlastivostej konfiguraciyi v algoritmi yakij ne zberigaye vsyu konfiguraciyu v pam yati Ce mozhna zrobiti efektivno za chas O n2 i z pam yattyu O n za dopomogoyu algoritmichnoyi tehniki vidomoyi yak topologichne vimitannya Tochne obchislennya konfiguraciyi pryamih vimagaye obchislyuvalnoyi tochnosti v kilka raziv bilshoyi nizh vhidni dani koordinati yaksho pryama zadayetsya dvoma tochkami na nij koordinati konfiguraciyi vershin mozhut zazhadati v 4 razi bilshoyi tochnosti nizh tochnist tochok vhidnih danih Tomu v obchislyuvalnij geometriyi vivchayut takozh algoritmi pobudovi konfiguracij efektivno z obmezhenoyu chiselnoyu tochnistyu Takozh doslidniki vivchali efektivni algoritmi pobudovi menshih chastin konfiguraciyi takih yak zoni k rivni abo mnozhini komirok sho mistyat zadanij nabir tochok Zadacha znahodzhennya konfiguraciyi vershin z medianoyu x koordinat vinikaye v dvoyistij formi v robastnih statistikah yak zadacha obchislennya mnozhini tochok Mark van Kreveld zaproponuvav algoritmichnu zadachu obchislennya najkorotshogo shlyahu mizh vershinami v konfiguraciyi pryamih de shlyahi obmezheni rebrami konfiguraciyi Zadacha stavitsya tak chi ye algoritmi sho pracyuyut za chas menshij nizh kvadratichnij yakij znadobivsya b dlya algoritmu poshuku najkorotshogo shlyahu v povnomu grafi konfiguraciyi Vidomij aproksimacijnij algoritm i zadachu mozhna efektivno rozv yazati dlya pryamih yaki rozbivayutsya na nevelike chislo simejstv paralelnih pryamih sho tipovo dlya vulic mist odnak zadacha v zagalnomu viglyadi zalishayetsya vidkritoyu Variaciyi ta uzagalnennyaKonfiguraciya psevdopryamih Konfiguraciya psevdopryamih ce konfiguraciya krivih sho mayut shozhi topologichni vlastivosti zi konfiguraciyeyu pryamih Yih najprostishe mozhna viznachiti na proyektivnij ploshini yak prosti zamknuti krivi z yakih bud yaki dvi peretinayutsya transversalno v yedinij tochci Kazhut sho konfiguraciya psevdopryamih roztyazhna yaksho vona kombinatorno ekvivalentna konfiguraciyi pryamih Zadacha vidriznennya roztyazhnih naboriv vid neroztyazhnih ye NP povnoyu Bud yaku konfiguraciyu skinchennogo chisla psevdopryamih mozhna rozshiriti tak sho psevdopryami stayut pryamimi v neevklidovij geometriyi incidentnosti v yakij bud yaki dvi tochki topologichnoyi ploshini z yednani yedinoyu pryamoyu yak na evklidovij ploshini ale v yakij inshi aksiomi evklidovoyi geometriyi mozhut ne vikonuvatisya Neroztyazhnij nabir dev yati psevdopryamih Usi nabori z chislom psevdopryamih menshe dev yati roztyazhni Za teoremoyu Pappa cyu konfiguraciyu ne mozhna realizuvati v proyektivnij ploshini nad bud yakim polem Giperbolichna konfiguraciya pryamih kombinatorno ekvivalentna diagrami hord vikoristanij Ageyevim dlya dovedennya sho kolovij graf bez trikutnikiv mozhe inodi vimagati 5 koloriv Ploshina Lobachevskogo Inshim tipom neevklidovoyi geometriyi ye ploshina Lobachevskogo i konfiguraciyi giperbolichnih pryamih u cij geometriyi takozh vivchalisya Bud yaka skinchenna mnozhina pryamih na evklidovij ploshini maye kombinatorno ekvivalentnu konfiguraciyu v giperbolichnij ploshini napriklad ukladayuchi vershini naboru u velike kolo i interpretuyuchi jogo vnutrishnist yak model Klyajna giperbolichnoyi ploshini Odnak u giperbolichnomu nabori pryamih mozhna uniknuti peretinannya pryamih bez vimogi paralelnosti pryamih Graf peretiniv pryamih u giperbolichnij konfiguraciyi ye kolovim grafom Vidpovidne ponyattya giperbolichnoyi konfiguraciyi pryamih dlya psevdopryamih slabka konfiguraciya psevdopryamih simejstvo krivih yake maye ti zh topologichni vlastivosti sho j pryami taki sho bud yaki dvi krivi v simejstvi abo peretinayutsya v odnij tochci abo ne peretinayutsya vzagali Div takozhKonfiguraciya nabir pryamih i mnozhina tochok de vsi pryami mistyat odne i te same chislo tochok a vsi tochki nalezhat odnakovomu chislu pryamih Konfiguraciya rozbittya prostoru rozbittya ploshini zadane krivimi abo prostoriv vishih rozmirnostej zadane poverhnyami koli ne potribno shob poverhnya bula ploshinoyu PrimitkiV anglomovnij literaturi arrangement sho chasto perekladayut yak konfiguraciya odnak isnuye inshij termin configuration yakij prirodno perekladati takozh slovom konfiguraciya Inkoli vikoristovuyut termin nabir pryamih inkoli rozbittya pryamimi abo giperploshinami U lokalno skinchennih naborah bud yaka obmezhena pidmnozhina ploshini mozhe peretinatisya lishe skinchennim chislom pryamih Grunbaum 1972 s 4 Steiner 1826 Agarwal Sharir 2000 Dlya komirok u yakih ye gorizontalne nizhnye rebro vibirayemo vershinu pravoruch Chazelle et al 1985 Edelsbrunner 1987 Edelsbrunner O Rourke Seidel 1986 Bern Eppstein Plassman Yao 1991 Aronov Matousek Sharir 1994 Dey 1998 Toth 2001 Zadachu obmezhennya skladnosti k rivniv upershe vivchali Lovash Lovasz 1971 i grupa Erdesh Simons Straus Erdos et al 1973 Alon Gyori 1986 Balogh ta in 2004 see also Matousek 1991 Canham 1969 Clarkson et al 1990 Ajtai Chvatal Newborn Szemeredi 1982 Leighton 1983 Szekely 1997 Melchior 1940 Grunbaum 2005 Grunbaum 1972 Artes Grunbaum Llibre 1998 Crowe McKee 1968 Dirac 1951 Kelly Moser 1958 Grunbaum 1972 s 18 Eppstein Falmagne Ovchinnikov 2007 Eppstein 2006 Levi 1926 Roudneff 1988 Furedi Palasti 1984 Purdy 1979 Purdy 1980 Strommer 1977 de Bruijn 1981 Edelsbrunner Guibas 1989 Fortune Milenkovic 1991 Greene Yao 1986 Milenkovic 1989 Aharoni et al 1999 Agarwal de Berg Matousek Schwarzkopf 1998 Chan 1999 Cole Sharir Yap 1987 Edelsbrunner Welzl 1986 Agarwal 1990 Agarwal Matousek Sharir 1998 Edelsbrunner Guibas Sharir 1990 Cole Salowe Steiger Szemeredi 1989 Erickson 1997 Bose et al 1996 Eppstein Hart 1999 Agarwal Sharir 2002 Shor 1991 Schaefer 2010 Ageev 1996 de Fraysseix Ossona de Mendez 2003 Alternativne viznachennya Shora Shor 1991 psevdopryama ye obrazom pryamoyi gomeomorfizmu ploshini LiteraturaP K Agarwal Partitioning arrangements of lines II Applications 1990 T 5 vip 1 S 533 573 DOI 10 1007 BF02187809 P K Agarwal M de Berg J Matousek O Schwarzkopf Constructing levels in arrangements and higher order Voronoi diagrams SIAM Journal on Computing 1998 T 27 vip 3 S 654 667 DOI 10 1137 S0097539795281840 P K Agarwal J Matousek M Sharir Computing many faces in arrangements of lines and segments SIAM Journal on Computing 1998 T 27 vip 2 S 491 505 DOI 10 1137 S009753979426616X P K Agarwal M Sharir 1 Elsevier 2000 S 49 119 z dzherela 10 chervnya 2007 P K Agarwal M Sharir Proc 13th ACM SIAM Symp Discrete algorithms SODA 02 San Francisco Society for Industrial and Applied Mathematics 2002 S 800 809 A A Ageev A triangle free circle graph with chromatic number 5 Discrete Math 1996 T 152 S 295 298 DOI 10 1016 0012 365X 95 00349 2 Y Aharoni D Halperin I Hanniel S Har Peled C Linhart Proc 3rd Int Worksh Algorithm Engineering WAE 99 Springer Verlag 1999 T 1668 S 139 153 Lecture Notes in Computer Science DOI 10 1007 3 540 48318 7 13 M Ajtai V Chvatal M Newborn E Szemeredi Theory and Practice of Combinatorics North Holland 1982 T 60 S 9 12 North Holland Mathematics Studies N Alon E Gyori The number of small semi spaces of a finite set of points in the plane Journal of Combinatorial Theory Series A 1986 T 41 S 154 157 DOI 10 1016 0097 3165 86 90122 6 B Aronov J Matousek M Sharir On the sum of squares of cell complexities in hyperplane arrangements Journal of Combinatorial Theory Series A 1994 T 65 vip 2 S 311 321 DOI 10 1016 0097 3165 94 90027 2 J C Artes B Grunbaum J Llibre On the number of invariant straight lines for polynomial differential systems Pacific Journal of Mathematics 1998 T 184 vip 2 S 207 230 DOI 10 2140 pjm 1998 184 207 z dzherela 18 lipnya 2010 Procitovano 26 chervnya 2021 J Balogh O Regev C Smyth W Steiger M Szegedy Long monotone paths in line arrangements 2004 T 32 vip 2 S 167 176 DOI 10 1007 s00454 004 1119 1 M W Bern D Eppstein P E Plassman F F Yao Discrete and Computational Geometry Papers from the DIMACS Special Year J E Goodman R Pollack W Steiger Amer Math Soc 1991 S 45 66 DIMACS Ser Discrete Math and Theoretical Computer Science P Bose W Evans D G Kirkpatrick M McAllister J Snoeyink Proc 8th Canadian Conf Computational Geometry 1996 S 143 148 N G de Bruijn 2 1981 T 43 S 38 66 z dzherela 7 travnya 2021 R Canham A theorem on arrangements of lines in the plane Israel J Math 1969 T 7 vip 4 S 393 397 DOI 10 1007 BF02788872 T Chan 3 1999 z dzherela 4 listopada 2010 B Chazelle L J Guibas D T Lee The power of geometric duality BIT 1985 T 25 vip 1 S 76 90 DOI 10 1007 BF01934990 K Clarkson H Edelsbrunner L J Guibas M Sharir E Welzl Combinatorial complexity bounds for arrangements of curves and spheres 1990 T 5 S 99 160 DOI 10 1007 BF02187783 Richard Cole Jeffrey S Salowe W L Steiger Endre Szemeredi An optimal time algorithm for slope selection 1989 T 18 vip 4 S 792 810 DOI 10 1137 0218055 R Cole M Sharir C K Yap On k hulls and related problems SIAM Journal on Computing 1987 T 16 vip 1 S 61 77 DOI 10 1137 0216005 D W Crowe T A McKee Sylvester s problem on collinear points Mathematical Association of America 1968 T 41 vip 1 S 30 34 DOI 10 2307 2687957 T L Dey Improved bounds for planar k sets and related problems 1998 T 19 vip 3 S 373 382 DOI 10 1007 PL00009354 G Dirac Collinearity properties of sets of points Quart J Math 1951 T 2 S 221 227 DOI 10 1093 qmath 2 1 221 H Edelsbrunner Algorithms in Combinatorial Geometry Springer Verlag 1987 EATCS Monographs in Theoretical Computer Science ISBN 978 3 540 13722 1 H Edelsbrunner L J Guibas Topologically sweeping an arrangement Journal of Computer and System Sciences 1989 T 38 vip 1 S 165 194 DOI 10 1016 0022 0000 89 90038 X H Edelsbrunner L J Guibas M Sharir The complexity and construction of many faces in arrangements of lines and of segments 1990 T 5 vip 1 S 161 196 DOI 10 1007 BF02187784 H Edelsbrunner J O Rourke R Seidel Constructing arrangements of lines and hyperplanes with applications SIAM Journal on Computing 1986 T 15 vip 2 S 341 363 DOI 10 1137 0215024 H Edelsbrunner E Welzl Constructing belts in two dimensional arrangements with applications SIAM Journal on Computing 1986 T 15 vip 1 S 271 284 DOI 10 1137 0215019 D Eppstein Cubic partial cubes from simplicial arrangements Electronic J Combinatorics 2006 T 13 vip 1 R79 S 1 14 arXiv math CO 0510263 z dzherela 14 lyutogo 2012 Procitovano 26 chervnya 2021 D Eppstein J Cl Falmagne S Ovchinnikov Media Theory Springer Verlag 2007 D Eppstein D Hart Proc 10th ACM SIAM Symp Discrete Algorithms SODA 99 1999 S 310 316 P Erdos L Lovasz A Simmons E G Straus A Survey of Combinatorial Theory Proc Internat Sympos Colorado State Univ Fort Collins Colo 1971 Amsterdam North Holland 1973 S 139 149 J Erickson Shortest paths in line arrangements 1997 z dzherela 3 grudnya 2008 Procitovano 26 chervnya 2021 S Fortune V Milenkovic Proc 7th ACM Symp Computational Geometry SoCG 91 1991 S 334 341 DOI 10 1145 109648 109685 H de Fraysseix P Ossona de Mendez Proc 11th Int Symp Graph Drawing GD 2003 Springer Verlag 2003 S 71 85 Lecture Notes in Computer Science Z Furedi I Palasti 4 Proceedings of the American Mathematical Society 1984 T 92 S 561 566 DOI 10 2307 2045427 z dzherela 3 bereznya 2016 D Greene F F Yao Proc 27th IEEE Symp Foundations of Computer Science 1986 S 143 152 DOI 10 1109 SFCS 1986 19 B Grunbaum Arrangements and Spreads Providence R I American Mathematical Society 1972 T 10 Regional Conference Series in Mathematics B Grunbaum A catalogue of simplicial arrangements in the real projective plane 2005 z dzherela 22 lipnya 2012 Procitovano 26 chervnya 2021 L M Kelly W O J Moser On the number of ordinary lines determined by n points Canad J Math 1958 T 10 S 210 219 DOI 10 4153 CJM 1958 024 6 F T Leighton Complexity Issues in VLSI Cambridge MA MIT Press 1983 Foundations of Computing Series F Levi Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade Ber Math Phys Kl Sachs Akad Wiss Leipzig 1926 T 78 S 256 267 L Lovasz On the number of halving lines Annales Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae Sectio Mathematica 1971 T 14 S 107 108 J Matousek Lower bounds on the length of monotone paths in arrangements 1991 T 6 vip 1 S 129 134 DOI 10 1007 BF02574679 E Melchior Uber Vielseite der projektiven Ebene Deutsche Mathematik 1940 T 5 S 461 475 V Milenkovic Proc 30th IEEE Symp Foundations of Computer Science FOCS 89 1989 S 500 505 DOI 10 1109 SFCS 1989 63525 Th Motzkin The Lines and Planes Connecting the Points of a Finite Set Transactions of the American Mathematical Society American Mathematical Society 1951 T 70 S 451 464 DOI 10 2307 1990609 G B Purdy Triangles in arrangements of lines Discrete Math 1979 T 25 vip 2 S 157 163 DOI 10 1016 0012 365X 79 90018 9 G B Purdy Triangles in arrangements of lines II Proceedings of the American Mathematical Society 1980 T 79 S 77 81 DOI 10 1090 S0002 9939 1980 0560588 4 J P Roudneff Arrangements of lines with a minimum number of triangles are simple 1988 T 3 vip 1 S 97 102 DOI 10 1007 BF02187900 Marcus Schaefer Graph Drawing 17th International Symposium GS 2009 Chicago IL USA September 2009 Revised Papers Springer Verlag 2010 T 5849 S 334 344 Lecture Notes in Computer Science DOI 10 1007 978 3 642 11805 0 32 P W Shor Applied Geometry and Discrete Mathematics The Victor Klee Festschrift P Gritzmann B Sturmfels Providence R I American Mathematical Society 1991 T 4 S 531 554 DIMACS Series in Discrete Mathematics and Theoretical Computer Science J Steiner Einige Gesetze uber die Theilung der Ebene und des Raumes 1826 T 1 S 349 364 T O Strommer Triangles in arrangements of lines Journal of Combinatorial Theory Series A 1977 T 23 vip 3 S 314 320 DOI 10 1016 0097 3165 77 90022 X L A Szekely Crossing numbers and hard Erdos problems in discrete geometry 1997 T 6 vip 3 S 353 358 DOI 10 1017 S0963548397002976 G Toth Point sets with many k sets 2001 T 26 vip 2 S 187 194 DOI 10 1007 s004540010022 Posilannya
Топ