В математиці, бінарне відношення R називається фундованим на класі X якщо непорожня множина S ⊆ X має мінімальний елемент по відношенню до R, тобто, такий елемент елемент m, для якого не існує s R m (для всіх s ∈ S. Формально:
Див. також
Джерела
- Хаусдорф Ф. Теория множеств. — Москва ; Ленинград : , 1937. — 304 с. — .(рос.)
- Куратовский К., Мостовский А. Теория множеств = Set Theory (Teoria mnogości). — М. : Мир, 1970. — 416 с.(рос.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
V matematici binarne vidnoshennya R nazivayetsya fundovanim na klasi X yaksho neporozhnya mnozhina S X maye minimalnij element po vidnoshennyu do R tobto takij element element m dlya yakogo ne isnuye s R m dlya vsih s S Formalno S X S m S s S s R m displaystyle forall S subseteq X S neq emptyset implies exists m in S forall s in S lnot s mathrel R m Div takozhFundovana mnozhinaDzherelaHausdorf F Teoriya mnozhestv Moskva Leningrad 1937 304 s ISBN 978 5 382 00127 2 ros Kuratovskij K Mostovskij A Teoriya mnozhestv Set Theory Teoria mnogosci M Mir 1970 416 s ros