Фа́зова діагра́ма води́ — графічне відображення рівноважного стану фаз води (рідини, водяної пари та різних модифікацій льоду). Будується в системі координат температура—тиск.
Елементи фазової діаграми
Потрійні точки
№ | Фази | Тиск | Температура | Примітка | |||
---|---|---|---|---|---|---|---|
МПа | °C | K | |||||
1 | Пар | Вода | Лід Ih | 611,657 Па | 0,01 | 273,16 |
|
2 | Пар | Лід Ih | 0 | -201,0 | 72,15 |
| |
3 | Вода | Лід Ih | 209,9 | -21,985 | 251,165 |
| |
4 | Лід Ih | Лід III | 212,9 | -34,7 | 238,45 | ||
5 | Лід II | Лід III | 344,3 | -24,3 | 248,85 | ||
6 | Лід II | Лід XV | ~ 800 | -143 | 130 | Для D2O | |
7 | Вода | Лід III | Лід V | 350,1 | -16,986 | 256,164 | |
8 | Вода | ~ 500—600 | ~ -6 | ~ 267 |
| ||
9 | Лід II | Лід V | Лід VI | ~ 620 | ~ -55 | ~ 218 | |
10 | Вода | Лід V | Лід VI | 632,4 | 0.16 | 273,32 | |
11 | Лід VI | Лід XV | ~ 1500 | -143 | 130 | Для D2O | |
12 | Лід VI | Лід VII | Лід VIII | 2100 | ~ 5 | ~ 278 | |
13 | Вода | Лід VI | Лід VII | 2216 | 81,85 | 355 | |
14 | Лід VII | Лід VIII | Лід X | 62 000 | -173 | 100 | |
15 | Вода | Лід VII | Лід X | 47 000 | ~ 727 | ~ 1000 |
Крива сублімації льоду
Крива льоду починається в точці (0 Па; 0 K) і закінчується в потрійній точці води (611,657 Па; 273,16 K). На цій ділянці при зниженні температури тиск сублімації падає експоненціально і при вже температурі 130 K складає незначну величину (10−8 Па).
З гарною точністю тиск сублімації на цій ділянці описується експонентою
где
Помилка цієї формули - не більше 1% в діапазоні температур 240-273,16 K і не більше 2,5% діапазоні температур 140-240 K.
Більш точно крива сублімації описується формулою, рекомендованою IAPWS(англ. International Association for the Properties of Water and Steam — Міжнародна асоціація з вивчення властивостей води і пари):
где
Крива плавлення льоду Ih
Крива плавлення льоду Ih (тобто звичайного льоду) на фазовій діаграмі в області низьких тисків є в практично вертикальну пряму. Так, при переході від потрійної точки (611 Па) до атмосферного тиску (101 кПа) температура плавлення падає всього на 0,008 K (з 273,16 до 273,15 K). Тиск, необхідне для зниження температури плавлення на 1 K становить близько 132 атм. Крива плавлення по горизонтальній осі займає діапазон температур 251,165-273,16 K (–21,985 ... 0,01 °C). Мінімальна температура плавлення (–21,985 °С) досягається при тиску 208,566 МПа (2058 атм).
Крива плавлення льоду Ih — єдиний фазовий перехід, пов'язаний зі зміною агрегатного стану води, який має зворотний нахил (при збільшенні тиску температура плавлення зменшується). Ця обставина (згідно з принципом ле Шательє) пояснюється тим, що лід Ih має меншу щільність у порівнянні з водою при тому ж тиску. Всі інші модифікації льоду важче води, їх температура плавлення при підвищенні тиску збільшується.
Крива плавлення описується формулою, рекомендованою IAPWS:
где
Крива плавлення льоду III
Крива плавлення льоду III III починається в точці мінімальної температури затвердіння води (251,165 K; 208,566 МПа), де звичайний лід перетворюється на структурну модифікацію III, і закінчується в точці (256,164 K; 350,1 МПа), де проходить межа фаз III і V.
Крива плавлення описується формулою, рекомендованою IAPWS:
где
Крива плавлення льоду V
Крива плавлення льоду V починається в точці (256,164 K; 350,1 МПа), на межі фаз III і V, і закінчується в точці (273,31 K; 632,4 МПа), де проходить межа фаз V та VI.
Крива плавлення описується формулою, рекомендованою IAPWS:
где
Крива плавлення льоду VI
Крива плавлення льоду VI починається в точці (273,31 K; 632,4 МПа), на межі фаз V та VI, і закінчується в точці (355 K; 2216 МПа), де проходить межа фаз VI і VII.
Крива плавлення описується формулою, рекомендованою IAPWS:
где
Крива плавлення льоду VII
Крива плавлення льоду VII починається в точці (355 K; 2216 МПа), на межі фаз VI і VII, і закінчується в точці (715 K; 20,6 ГПа), де проходить межа фази VII.
Крива плавлення описується формулою, рекомендованою IAPWS:
где
Крива насичення водяної пари
Крива насичення водяної пари починається в потрійній точці води (273,16 K; 611,657 Па) і закінчується в критичній точці (647,096 К; 22,064 МПа). Вона показує температуру кипіння води при зазначеному тиску або, що теж саме, тиск насиченої водяної пари при вказаній температурі. У критичній точці щільність водяної пари досягає щільності води і, таким чином, різниця між цими агрегатними станами зникає.
Відповідно до рекомендацій IAPWS, лінія насичення представляється у вигляді неявного квадратного рівняння щодо нормованої температури θ і нормованого тиску β:
де
Для заданого абсолютного значення температури T обчислюється нормоване значенняθі коефіцієнти квадратного рівняння
після чого знаходиться значенняβ
і абсолютне значення тиску:
Тиск насиченої водяної пари (кПа) при різних температурах
T °C | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0,6112 | 0,6571 | 0,7060 | 0,7581 | 0,8135 | 0,8726 | 0,9354 | 1,002 | 1,073 | 1,148 |
10 | 1,228 | 1,313 | 1,403 | 1,498 | 1,599 | 1,706 | 1,819 | 1,938 | 2,065 | 2,198 |
20 | 2,339 | 2,488 | 2,645 | 2,811 | 2,986 | 3,170 | 3,364 | 3,568 | 3,783 | 4,009 |
30 | 4,247 | 4,497 | 4,759 | 5,035 | 5,325 | 5,629 | 5,947 | 6,282 | 6,632 | 7,000 |
40 | 7,384 | 7,787 | 8,209 | 8,650 | 9,112 | 9,594 | 10,10 | 10,63 | 11,18 | 11,75 |
50 | 12,35 | 12,98 | 13,63 | 14,31 | 15,02 | 15,76 | 16,53 | 17,33 | 18,17 | 19,04 |
60 | 19,95 | 20,89 | 21,87 | 22,88 | 23,94 | 25,04 | 26,18 | 27,37 | 28,60 | 29,88 |
70 | 31,20 | 32,57 | 34,00 | 35,48 | 37,01 | 38,60 | 40,24 | 41,94 | 43,70 | 45,53 |
80 | 47,41 | 49,37 | 51,39 | 53,48 | 55,64 | 57,87 | 60,17 | 62,56 | 65,02 | 67,56 |
90 | 70,18 | 72,89 | 75,68 | 78,57 | 81,54 | 84,61 | 87,77 | 91,03 | 94,39 | 97,85 |
100 | 101,4 |
Див. також
Посилання
- IAPWS [ 25 червня 2012 у Wayback Machine.]. Сайт Міжнародної асоціації з вивчення властивостей води.
- Water Phase Diagram [ 27 квітня 2019 у Wayback Machine.].
- Теплофізичні властивості води і водяної пари [ 17 вересня 2008 у Wayback Machine.].
- Phase-boundary curves of water [ 23 грудня 2011 у Wayback Machine.].
- Saturation vapor pressure formulations [ 30 листопада 2011 у Wayback Machine.].
- Water (Data Page)[недоступне посилання з липня 2019].
Примітки
- L. A.Guildner, D. P. Johnson, and F. E. Jones. Vapor pressure of water at its triple point : ( )[англ.] // J. Res. Nat. Bur. Stand.. — 1976. — Vol. 80A. — P. 505—521.
- M. J. Francis, N. Gulati and R. M. Pashley. The dispersion of natural oils in de-gassed water : ( )[англ.] // J. Colloid Interface Sci.. — 2006. — Vol. 299. — P. 673—677.[недоступне посилання з липня 2019]
- R. M. Pashley, M. Rzechowicz, L. R. Pashley and M. J. Francis. De-gassed water Is a better cleaning agent : ( )[англ.] // J. Phys. Chem.. — 2005. — Vol. 109. — P. 1231—1238.
- R. M. Pashley, M. J. Francis and M. Rzechowicz. The hydrophobicity of non-aqueous liquids and their dispersion in water under de-gassed conditions : ( )[англ.] // Curr. Opin. Colloid Interface Sci.. — 2008. — Vol. 13. — P. 236—244.[недоступне посилання з липня 2019]
- Release on the pressure along the melting and the sublimation curves of ordinary water substance [ 6 жовтня 2008 у Wayback Machine.]. IAPWS, 1993.
- P. W. Bridgman Water, in the liquid and five solid forms, under pressure. Proc. Am. Acad. Arts Sci. 47, 1912, 439—558.
- J. L. F. Abascal, E. Sanz, R. G. Fernández, and C. Vega A potential model for the study of ices and amorphous water: TIP4P/Ice. J. Chem. Phys. 122 (2005) 234511.
- C. G. Salzmann, P. G. Radaelli, E. Mayer and J. L. Finney Ice XV: a new thermodynamically stable phase of ice [ 3 лютого 2020 у Wayback Machine.]. arXiv:0906.2489v1, cond-mat.mtrl-sci (2009).
- E. A. Zheligovskaya, G. G. Malenkov Crystalline water ices [ 28 вересня 2006 у Wayback Machine.]. Russian Chem. Rev. 75 (2006) 57-76.
- L. Mercury, P. Vieillard and Y. Tardy Thermodynamics of ice polymorphs and `ice-like' water in hydrates and hydroxides[недоступне посилання з липня 2019]. Appl. Geochem. 16 (2001) 161—181.
- D. Eisenberg and W. Kauzmann The structure and properties of water [ 24 квітня 2014 у Wayback Machine.]. Oxford University Press, London, 1969.
- L. Pauling The structure of water. В кн.: Hydrogen bonding, Ed. D. Hadzi and H. W. Thompson, Pergamon Press Ltd, London, 1959, pp 1-6.
- M. Song, H. Yamawaki, H. Fujihisa, M. Sakashita and K. Aoki Infrared investigation on ice VIII and the phase diagram of dense ices. Phys. Rev. B 68 (2003) 014106.
- B. Schwager, L. Chudinovskikh, A. Gavriliuk and R. Boehler Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell. J. Phys: Condens. Matter 16 (2004) S1177-S1179.
- A. F. Goncharov, N. Goldman, L. E. Fried, J. C. Crowhurst, I-F. W. Kuo, C. J. Mundy and J. M. Zaug Dynamic ionization of water under extreme conditions [ 31 липня 2013 у Wayback Machine.]. Phys. Rev. Lett. 94 (2005)125508.
- Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance [ 6 жовтня 2008 у Wayback Machine.]. The International Association for the Properties of Water and Steam. Berlin, Germany, September 2008.
- Рівняння лінії насичення [ 20 травня 2017 у Wayback Machine.]: Александров А.А, Орлов К. А., Очков В. Ф. Теплофизические свойства рабочих веществ теплоэнергетики: Интернет-справочник. — М.: Издательский дом МЭИ. 2009.
Література
- J. L. Aragones, M. M. Conde, E. G. Noya, C. Vega. The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase : ( )[англ.] // Phys. Chem. Chem. Phys.. — 2009. — № 11. — P. 543–555.
- C. Vega, J. L. F. Abascal, M. M. Conde and J. L. Aragones. What ice can teach us about water interactions: a critical comparison of the performance of different water models : ( )[англ.] // Faraday Discussions. — 2009. — Vol. 141. — P. 251—276.
- C. G. Salzmann, I. Kohl, T. Loerting, E. Mayer and A. Hallbrucker. Pure ices IV and XII from high-density amorphous ice : ( )[англ.] // Can. J. Phys.. — 2003. — Vol. 81. — P. 25—32.
- Александров А.А, Орлов К.А., Очков В.Ф. (2009). Теплофизические свойства рабочих веществ теплоэнергетики: Интернет-справочник. М.: Издательский дом МЭИ. Архів оригіналу за 26 травня 2012. Процитовано 25 вересня 2010.
{{}}
: Cite має пустий невідомий параметр:|description=
() - Jana Kalovaa and Radim Maresb. Equations for the Thermodynamic Properties at the Saturation Line in the Supercooled Water Region : ( )[англ.] // ICPWS XV : Preprint. — Berlin, September 8-11, 2008. — P. 1–5.
- W. Wagner, A. Saul, A. Pruβ. International Equations for the Pressure along the Melting and along the Sublimation Curve of Ordinary Water Substance : ( )[англ.] // J. Phys. Chem. Ref. Data : Preprint. — 1994. — Vol. 23, № 3. — P. 515—527.
- Percy W . Bridgman. General survey of certain results in the field of high-pressure physics : ( )[англ.]. — December 11, 1946.[недоступне посилання з липня 2019]
- Д. В. Анцышкин, А. Н. Дунаева, О. Л. Кусков. Термодинамика фазовых переходов в системе лед-VI — лед-VII — вода : ( )[англ.] // Геохимия. — 2010. — № 7. — С. 675-684.[недоступне посилання з липня 2019]
- José Teixeira. The «puzzle» of Water Behavior at Low Temperature : ( )[англ.] // Water. — 2010. — № 2. — С. 702-710.
- Wely Brasil Floriano, Marco Antonio Chaer Nascimento. Dielectric Constant and Density of Water as a Function of Pressure at Constant Temperature : ( )[англ.] // Brazilian Journal of Physics. — March, 2004. — Vol. 34, № 1. — С. 38—41.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Dokladnishe Voda Fa zova diagra ma vodi grafichne vidobrazhennya rivnovazhnogo stanu faz vodi ridini vodyanoyi pari ta riznih modifikacij lodu Buduyetsya v sistemi koordinat temperatura tisk Fragment fazovoyi diagrami vodiElementi fazovoyi diagramiPotrijni tochki Fazi Tisk Temperatura Primitka MPa C K 1 Par Voda Lid Ih 611 657 Pa 0 01 273 16 2 Par Lid Ih 0 201 0 72 15 3 Voda Lid Ih 209 9 21 985 251 165 4 Lid Ih Lid III 212 9 34 7 238 45 5 Lid II Lid III 344 3 24 3 248 85 6 Lid II Lid XV 800 143 130 Dlya D2O 7 Voda Lid III Lid V 350 1 16 986 256 164 8 Voda 500 600 6 267 9 Lid II Lid V Lid VI 620 55 218 10 Voda Lid V Lid VI 632 4 0 16 273 32 11 Lid VI Lid XV 1500 143 130 Dlya D2O 12 Lid VI Lid VII Lid VIII 2100 5 278 13 Voda Lid VI Lid VII 2216 81 85 355 14 Lid VII Lid VIII Lid X 62 000 173 100 15 Voda Lid VII Lid X 47 000 727 1000 Kriva sublimaciyi lodu Kriva sublimaciyi lodu Linijnij masshtab po osi P Kriva lodu pochinayetsya v tochci 0 Pa 0 K i zakinchuyetsya v potrijnij tochci vodi 611 657 Pa 273 16 K Na cij dilyanci pri znizhenni temperaturi tisk sublimaciyi padaye eksponencialno i pri vzhe temperaturi 130 K skladaye neznachnu velichinu 10 8 Pa Z garnoyu tochnistyu tisk sublimaciyi na cij dilyanci opisuyetsya eksponentoyu P A e x p B T displaystyle P A cdot exp B T gde A 3 41 10 12 P a B 6130 K displaystyle A 3 41 cdot 10 12 mathrm Pa quad B 6130 mathrm K Pomilka ciyeyi formuli ne bilshe 1 v diapazoni temperatur 240 273 16 K i ne bilshe 2 5 diapazoni temperatur 140 240 K Bilsh tochno kriva sublimaciyi opisuyetsya formuloyu rekomendovanoyu IAPWS angl International Association for the Properties of Water and Steam Mizhnarodna asociaciya z vivchennya vlastivostej vodi i pari ln P P 0 T 0 T i 1 3 a i T T 0 b i displaystyle ln frac P P 0 frac T 0 T sum i 1 3 a i left T over T 0 right b i gde P 0 611 657 P a T 0 273 16 K a 1 21 2144006 b 1 0 003333333 a 2 27 3203819 b 2 1 20666667 a 3 6 1059813 b 3 1 70333333 displaystyle begin matrix P 0 611 657 mathrm Pa amp T 0 273 16 mathrm K a 1 21 2144006 amp b 1 0 003333333 a 2 27 3203819 amp b 2 1 20666667 a 3 6 1059813 amp b 3 1 70333333 end matrix Kriva plavlennya lodu Ih Kriva plavlennya lodu Ih tobto zvichajnogo lodu na fazovij diagrami v oblasti nizkih tiskiv ye v praktichno vertikalnu pryamu Tak pri perehodi vid potrijnoyi tochki 611 Pa do atmosfernogo tisku 101 kPa temperatura plavlennya padaye vsogo na 0 008 K z 273 16 do 273 15 K Tisk neobhidne dlya znizhennya temperaturi plavlennya na 1 K stanovit blizko 132 atm Kriva plavlennya po gorizontalnij osi zajmaye diapazon temperatur 251 165 273 16 K 21 985 0 01 C Minimalna temperatura plavlennya 21 985 S dosyagayetsya pri tisku 208 566 MPa 2058 atm Kriva plavlennya lodu Ih yedinij fazovij perehid pov yazanij zi zminoyu agregatnogo stanu vodi yakij maye zvorotnij nahil pri zbilshenni tisku temperatura plavlennya zmenshuyetsya Cya obstavina zgidno z principom le Shatelye poyasnyuyetsya tim sho lid Ih maye menshu shilnist u porivnyanni z vodoyu pri tomu zh tisku Vsi inshi modifikaciyi lodu vazhche vodi yih temperatura plavlennya pri pidvishenni tisku zbilshuyetsya Kriva plavlennya opisuyetsya formuloyu rekomendovanoyu IAPWS P P 0 1 i 1 3 a i 1 T T 0 b i displaystyle frac P P 0 1 sum i 1 3 a i left 1 T over T 0 right b i gde P 0 611 657 P a T 0 273 16 K a 1 1 195 393 37 b 1 3 00 a 2 80 818 3159 b 2 25 75 a 3 3 338 2686 b 3 103 75 displaystyle begin matrix P 0 611 657 mathrm Pa amp T 0 273 16 mathrm K a 1 1 195 393 37 amp b1 3 00 a 2 80 818 3159 amp b2 25 75 a 3 3 338 2686 amp b3 103 75 end matrix Kriva plavlennya lodu III Kriva plavlennya lodu III III pochinayetsya v tochci minimalnoyi temperaturi zatverdinnya vodi 251 165 K 208 566 MPa de zvichajnij lid peretvoryuyetsya na strukturnu modifikaciyu III i zakinchuyetsya v tochci 256 164 K 350 1 MPa de prohodit mezha faz III i V Kriva plavlennya opisuyetsya formuloyu rekomendovanoyu IAPWS P P 0 1 0 299948 1 T T 0 60 displaystyle frac P P 0 1 0 299948 left 1 left T over T 0 right 60 right gde P 0 208 566 M P a T 0 251 165 K displaystyle P 0 208 566 mathrm MPa quad T 0 251 165 mathrm K Kriva plavlennya lodu V Kriva plavlennya lodu V pochinayetsya v tochci 256 164 K 350 1 MPa na mezhi faz III i V i zakinchuyetsya v tochci 273 31 K 632 4 MPa de prohodit mezha faz V ta VI Kriva plavlennya opisuyetsya formuloyu rekomendovanoyu IAPWS P P 0 1 1 18721 1 T T 0 8 displaystyle frac P P 0 1 1 18721 left 1 left T over T 0 right 8 right gde P 0 350 1 M P a T 0 256 164 K displaystyle P 0 350 1 mathrm MPa quad T 0 256 164 mathrm K Kriva plavlennya lodu VI Kriva plavlennya lodu VI pochinayetsya v tochci 273 31 K 632 4 MPa na mezhi faz V ta VI i zakinchuyetsya v tochci 355 K 2216 MPa de prohodit mezha faz VI i VII Kriva plavlennya opisuyetsya formuloyu rekomendovanoyu IAPWS P P 0 1 1 07476 1 T T 0 4 6 displaystyle frac P P 0 1 1 07476 left 1 left T over T 0 right 4 6 right gde P 0 632 4 M P a T 0 273 31 K displaystyle P 0 632 4 mathrm MPa quad T 0 273 31 mathrm K Kriva plavlennya lodu VII Kriva plavlennya lodu VII pochinayetsya v tochci 355 K 2216 MPa na mezhi faz VI i VII i zakinchuyetsya v tochci 715 K 20 6 GPa de prohodit mezha fazi VII Kriva plavlennya opisuyetsya formuloyu rekomendovanoyu IAPWS ln P P 0 i 1 3 a i 1 T T 0 b i displaystyle ln frac P P 0 sum i 1 3 a i left 1 T over T 0 right b i gde P 0 2216 M P a T 0 355 K a 1 1 73683 b 1 1 a 2 0 0544606 b 2 5 a 3 8 06106 10 8 b 3 22 displaystyle begin matrix P 0 2216 mathrm MPa amp T 0 355 mathrm K a 1 1 73683 amp b 1 1 a 2 0 0544606 amp b 2 5 a 3 8 06106 cdot 10 8 amp b 3 22 end matrix Kriva nasichennya vodyanoyi pari Kriva nasichennya vodyanoyi pari pochinayetsya v potrijnij tochci vodi 273 16 K 611 657 Pa i zakinchuyetsya v kritichnij tochci 647 096 K 22 064 MPa Vona pokazuye temperaturu kipinnya vodi pri zaznachenomu tisku abo sho tezh same tisk nasichenoyi vodyanoyi pari pri vkazanij temperaturi U kritichnij tochci shilnist vodyanoyi pari dosyagaye shilnosti vodi i takim chinom riznicya mizh cimi agregatnimi stanami znikaye Vidpovidno do rekomendacij IAPWS liniya nasichennya predstavlyayetsya u viglyadi neyavnogo kvadratnogo rivnyannya shodo normovanoyi temperaturi 8 i normovanogo tisku b b 2 8 2 n 1 b 2 8 n 2 b 2 n 3 b 8 2 n 4 b 8 n 5 b n 6 8 2 n 7 8 n 8 0 displaystyle beta 2 theta 2 n 1 beta 2 theta n 2 beta 2 n 3 beta theta 2 n 4 beta theta n 5 beta n 6 theta 2 n 7 theta n 8 0 de 8 T T 0 n 9 T T 0 n 10 T 0 1 K displaystyle theta T over T 0 frac n 9 T over T 0 n 10 quad T 0 1 mathrm K b P P 0 0 25 P 0 1 M P a displaystyle beta left frac P P 0 right 0 25 quad P 0 1 mathrm MPa n 0 1 0 displaystyle n 0 1 0 n 1 1167 0521452767 displaystyle n 1 1167 0521452767 n 2 724213 16703206 displaystyle n 2 724213 16703206 n 3 17 073846940092 displaystyle n 3 17 073846940092 n 4 12020 82470247 displaystyle n 4 12020 82470247 n 5 3232555 0322333 displaystyle n 5 3232555 0322333 n 6 14 91510861353 displaystyle n 6 14 91510861353 n 7 4823 2657361591 displaystyle n 7 4823 2657361591 n 8 405113 40542057 displaystyle n 8 405113 40542057 n 9 0 23855557567849 displaystyle n 9 0 23855557567849 n 10 650 17534844798 displaystyle n 10 650 17534844798 Dlya zadanogo absolyutnogo znachennya temperaturi T obchislyuyetsya normovane znachennya8i koeficiyenti kvadratnogo rivnyannya A 8 2 n 1 8 n 2 displaystyle A theta 2 n 1 theta n 2 B n 3 8 2 n 4 8 n 5 displaystyle B n 3 theta 2 n 4 theta n 5 C n 6 8 2 n 7 8 n 8 displaystyle C n 6 theta 2 n 7 theta n 8 pislya chogo znahoditsya znachennyab b B B 2 4 A C 2 A displaystyle beta frac B sqrt B 2 4AC 2A i absolyutne znachennya tisku P P 0 b 4 displaystyle P P 0 beta 4 Tisk nasichenoyi vodyanoyi pari kPa pri riznih temperaturah T C 0 1 2 3 4 5 6 7 8 9 0 0 6112 0 6571 0 7060 0 7581 0 8135 0 8726 0 9354 1 002 1 073 1 148 10 1 228 1 313 1 403 1 498 1 599 1 706 1 819 1 938 2 065 2 198 20 2 339 2 488 2 645 2 811 2 986 3 170 3 364 3 568 3 783 4 009 30 4 247 4 497 4 759 5 035 5 325 5 629 5 947 6 282 6 632 7 000 40 7 384 7 787 8 209 8 650 9 112 9 594 10 10 10 63 11 18 11 75 50 12 35 12 98 13 63 14 31 15 02 15 76 16 53 17 33 18 17 19 04 60 19 95 20 89 21 87 22 88 23 94 25 04 26 18 27 37 28 60 29 88 70 31 20 32 57 34 00 35 48 37 01 38 60 40 24 41 94 43 70 45 53 80 47 41 49 37 51 39 53 48 55 64 57 87 60 17 62 56 65 02 67 56 90 70 18 72 89 75 68 78 57 81 54 84 61 87 77 91 03 94 39 97 85 100 101 4Div takozhPravilo faz Potrijna tochka vodi Fazova diagrama Vlastivosti vodi Pruzhnist vodyanoyi pari Lid dev yatPosilannyaIAPWS 25 chervnya 2012 u Wayback Machine Sajt Mizhnarodnoyi asociaciyi z vivchennya vlastivostej vodi Water Phase Diagram 27 kvitnya 2019 u Wayback Machine Teplofizichni vlastivosti vodi i vodyanoyi pari 17 veresnya 2008 u Wayback Machine Phase boundary curves of water 23 grudnya 2011 u Wayback Machine Saturation vapor pressure formulations 30 listopada 2011 u Wayback Machine Water Data Page nedostupne posilannya z lipnya 2019 PrimitkiL A Guildner D P Johnson and F E Jones Vapor pressure of water at its triple point angl J Res Nat Bur Stand 1976 Vol 80A P 505 521 M J Francis N Gulati and R M Pashley The dispersion of natural oils in de gassed water angl J Colloid Interface Sci 2006 Vol 299 P 673 677 nedostupne posilannya z lipnya 2019 R M Pashley M Rzechowicz L R Pashley and M J Francis De gassed water Is a better cleaning agent angl J Phys Chem 2005 Vol 109 P 1231 1238 R M Pashley M J Francis and M Rzechowicz The hydrophobicity of non aqueous liquids and their dispersion in water under de gassed conditions angl Curr Opin Colloid Interface Sci 2008 Vol 13 P 236 244 nedostupne posilannya z lipnya 2019 Release on the pressure along the melting and the sublimation curves of ordinary water substance 6 zhovtnya 2008 u Wayback Machine IAPWS 1993 P W Bridgman Water in the liquid and five solid forms under pressure Proc Am Acad Arts Sci 47 1912 439 558 J L F Abascal E Sanz R G Fernandez and C Vega A potential model for the study of ices and amorphous water TIP4P Ice J Chem Phys 122 2005 234511 C G Salzmann P G Radaelli E Mayer and J L Finney Ice XV a new thermodynamically stable phase of ice 3 lyutogo 2020 u Wayback Machine arXiv 0906 2489v1 cond mat mtrl sci 2009 E A Zheligovskaya G G Malenkov Crystalline water ices 28 veresnya 2006 u Wayback Machine Russian Chem Rev 75 2006 57 76 L Mercury P Vieillard and Y Tardy Thermodynamics of ice polymorphs and ice like water in hydrates and hydroxides nedostupne posilannya z lipnya 2019 Appl Geochem 16 2001 161 181 D Eisenberg and W Kauzmann The structure and properties of water 24 kvitnya 2014 u Wayback Machine Oxford University Press London 1969 L Pauling The structure of water V kn Hydrogen bonding Ed D Hadzi and H W Thompson Pergamon Press Ltd London 1959 pp 1 6 M Song H Yamawaki H Fujihisa M Sakashita and K Aoki Infrared investigation on ice VIII and the phase diagram of dense ices Phys Rev B 68 2003 014106 B Schwager L Chudinovskikh A Gavriliuk and R Boehler Melting curve of H2O to 90 GPa measured in a laser heated diamond cell J Phys Condens Matter 16 2004 S1177 S1179 A F Goncharov N Goldman L E Fried J C Crowhurst I F W Kuo C J Mundy and J M Zaug Dynamic ionization of water under extreme conditions 31 lipnya 2013 u Wayback Machine Phys Rev Lett 94 2005 125508 Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance 6 zhovtnya 2008 u Wayback Machine The International Association for the Properties of Water and Steam Berlin Germany September 2008 Rivnyannya liniyi nasichennya 20 travnya 2017 u Wayback Machine Aleksandrov A A Orlov K A Ochkov V F Teplofizicheskie svojstva rabochih veshestv teploenergetiki Internet spravochnik M Izdatelskij dom MEI 2009 LiteraturaJ L Aragones M M Conde E G Noya C Vega The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P 2005 model the appearance of a plastic crystal phase angl Phys Chem Chem Phys 2009 11 P 543 555 C Vega J L F Abascal M M Conde and J L Aragones What ice can teach us about water interactions a critical comparison of the performance of different water models angl Faraday Discussions 2009 Vol 141 P 251 276 C G Salzmann I Kohl T Loerting E Mayer and A Hallbrucker Pure ices IV and XII from high density amorphous ice angl Can J Phys 2003 Vol 81 P 25 32 Aleksandrov A A Orlov K A Ochkov V F 2009 Teplofizicheskie svojstva rabochih veshestv teploenergetiki Internet spravochnik M Izdatelskij dom MEI Arhiv originalu za 26 travnya 2012 Procitovano 25 veresnya 2010 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Cite maye pustij nevidomij parametr description dovidka Jana Kalovaa and Radim Maresb Equations for the Thermodynamic Properties at the Saturation Line in the Supercooled Water Region angl ICPWS XV Preprint Berlin September 8 11 2008 P 1 5 W Wagner A Saul A Prub International Equations for the Pressure along the Melting and along the Sublimation Curve of Ordinary Water Substance angl J Phys Chem Ref Data Preprint 1994 Vol 23 3 P 515 527 Percy W Bridgman General survey of certain results in the field of high pressure physics angl December 11 1946 nedostupne posilannya z lipnya 2019 D V Ancyshkin A N Dunaeva O L Kuskov Termodinamika fazovyh perehodov v sisteme led VI led VII voda angl Geohimiya 2010 7 S 675 684 nedostupne posilannya z lipnya 2019 Jose Teixeira The puzzle of Water Behavior at Low Temperature angl Water 2010 2 S 702 710 Wely Brasil Floriano Marco Antonio Chaer Nascimento Dielectric Constant and Density of Water as a Function of Pressure at Constant Temperature angl Brazilian Journal of Physics March 2004 Vol 34 1 S 38 41