Нечітка множина — поняття, введене Лотфі Заде в 1965 році в статті «Fuzzy Sets» в журналі [en], в якому він розширив класичне поняття множини, допустивши, що характеристична функція множини (названа Заде функцією належності для нечіткої множини) може набувати будь-яких значень в інтервалі [0,1], а не тільки значень 0 або 1. Є базовим поняттям нечіткої логіки.
Визначення
Нехай — множина (класична). Нечітка множина задається своєю функцією належності:
Порожня множина , універсальна множина .
Якщо набуває значень , то множина — це класична підмножина, , в іншому випадку множина є нечіткою. Можна казати, що — це ступінь належності елемента до множини .
Носій нечіткої множини — це
Множина рівня , де — це
Тоді
Якщо , то зв'язні нечіткі множини називають [en].
Оскільки інтервали можна розглядати як нечіткі числа, то арифметика нечітких чисел є узагальненням інтервальної арифметики.
Операції над нечіткими множинами
Домінування (Вміщення)
Нехай і — нечіткі множини на універсальній множині .
Говорять, що міститься в , якщо .
Позначення: .
Інколи використовують термін «домінування», тобто у випадку, якщо , говорять, що домінує .
Рівність
і рівні, якщо .
Позначення: .
Доповнення
Нехай µ = [0, 1], і — нечіткі множини, задані на . і доповнюють один одного, якщо
- .
Доповнення нечіткої множини А позначається символом .
Операція доповнення відповідає логічному запереченню.
Перетин
Перетин і позначається і визначається
- .
Перетин відповідає логічній зв'язці «і». — найменша нечітка підмножина, яка міститься одночасно в і
Об'єднання
Об'єднання нечітких множин А і В (А + В)
Об'єднання відповідає логічній зв'язці «або».
А ∪ В — найбільша нечітка підмножина, яка включає як А, так і В, з функцією приналежності:
µA ∪ B(x)= max(µA(x), µ B(x)).
Диз'юнктивна сума
А⊕B = (А — B) ∪ (B — А) = (А ∩) ∪ ∩ B) з функцією приналежності:
µA — B(x) = max {[min {µA(x), 1 — µB(x)}];
[min {1 — µA(x), µB(x)}] }
Добуток А і В позначається АВ і визначається
Піднесення до степеня
Концентрація (частковий випадок піднесення до степеня):
Розтягування (розмивання):
Чітке відображення
Цей розділ потребує додаткових для поліпшення його . (січень 2020) |
Нехай X і Y — дві заданих універсальних множини. Говорять, що наявна функція, визначена на X зі значенням у Y, якщо, у силу деякого закону f, кожному елементу відповідає елемент .
Коли функцію f : називають відображенням, значення , якого вона набуває на елементі , звичайно називають образом елемента x.
Образом множини при відображенні називають множину тих елементів Y, що є образами елементів множини А.
Дане класичне визначення відображення, яке у теорії нечітких множин називають чітким відображенням.
Нечітке відображення
Цей розділ потребує додаткових для поліпшення його . (січень 2020) |
Нечітке відображення— це [en] виду:
Нечіткі відображення задаються функціями належності образів нечітких множин.
Тобто, якщо — функція належності множини та нехай
Тоді функція належності множини B задається у вигляді:
Або:
Джерела
- О. Ф. Волошин, С. О. Мащенко (2011). Моделі та методи прийняття рішень. Київ.
- В. Я. Півкін, Є. П. Бакулін, Д. І. Кореньков; (2001). Нечіткі множини в системах управління: навч. посібник [Електронний ресурс].
Це незавершена стаття з теорії множин. Ви можете проєкту, виправивши або дописавши її. |
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Nechitka mnozhina ponyattya vvedene Lotfi Zade v 1965 roci v statti Fuzzy Sets v zhurnali en v yakomu vin rozshiriv klasichne ponyattya mnozhini dopustivshi sho harakteristichna funkciya mnozhini nazvana Zade funkciyeyu nalezhnosti dlya nechitkoyi mnozhini mozhe nabuvati bud yakih znachen v intervali 0 1 a ne tilki znachen 0 abo 1 Ye bazovim ponyattyam nechitkoyi logiki ViznachennyaNehaj displaystyle mho mnozhina klasichna Nechitka mnozhina A displaystyle mathbf A zadayetsya svoyeyu funkciyeyu nalezhnosti m A 0 1 displaystyle mu mathbf A quad mho to 0 1 Porozhnya mnozhina m x 0 displaystyle mu varnothing x 0 universalna mnozhina m x 1 displaystyle mu mho x 1 Yaksho m A displaystyle mu mathbf A nabuvaye znachen 0 1 displaystyle 0 1 to mnozhina A displaystyle mathbf A ce klasichna pidmnozhina A displaystyle mathbf A subseteq mho v inshomu vipadku mnozhina A displaystyle mathbf A ye nechitkoyu Mozhna kazati sho m A x displaystyle mu mathbf A x ce stupin nalezhnosti elementa x displaystyle x do mnozhini A displaystyle mathbf A Nosij nechitkoyi mnozhini A displaystyle mathbf A ce s u p p A x m A gt 0 displaystyle mathrm supp mathbf A left x in mho mid mu mathbf A gt 0 right Mnozhina rivnya a displaystyle alpha de a 0 1 displaystyle alpha in 0 1 ce A a x m A a displaystyle mathbf A alpha left x in mho mid mu mathbf A geq alpha right Todi s u p p A a gt 0 A a displaystyle mathrm supp mathbf A bigcup alpha gt 0 mathbf A alpha Yaksho R displaystyle mho subseteq mathbb R to zv yazni nechitki mnozhini nazivayut en Oskilki intervali mozhna rozglyadati yak nechitki chisla to arifmetika nechitkih chisel ye uzagalnennyam intervalnoyi arifmetiki Operaciyi nad nechitkimi mnozhinamiDominuvannya Vmishennya Nehaj A displaystyle mathbf A i B displaystyle mathbf B nechitki mnozhini na universalnij mnozhini E displaystyle mathbf E Govoryat sho A displaystyle mathbf A mistitsya v B displaystyle mathbf B yaksho x E m A x lt m B x displaystyle forall x in mathbf E mu mathbf A x lt mu mathbf B x Poznachennya A B displaystyle mathbf A subset mathbf B Inkoli vikoristovuyut termin dominuvannya tobto u vipadku yaksho A B displaystyle mathbf A subset mathbf B govoryat sho B displaystyle mathbf B dominuye A displaystyle mathbf A Rivnist A displaystyle mathbf A i B displaystyle mathbf B rivni yaksho x E m A x m B x displaystyle forall x in mathbf E mu mathbf A x mu mathbf B x Poznachennya A B displaystyle mathbf A mathbf B Dopovnennya Nehaj µ 0 1 A displaystyle mathbf A i B displaystyle mathbf B nechitki mnozhini zadani na E displaystyle mathbf E A displaystyle mathbf A i B displaystyle mathbf B dopovnyuyut odin odnogo yaksho x E m A x 1 m B x displaystyle forall x in mathbf E mu mathbf A x 1 mu mathbf B x Dopovnennya nechitkoyi mnozhini A poznachayetsya simvolom A displaystyle overline A Operaciya dopovnennya vidpovidaye logichnomu zaperechennyu Peretin Peretin A displaystyle mathbf A i B displaystyle mathbf B poznachayetsya A B displaystyle mathbf A cap mathbf B i viznachayetsya m A B x min m A x m B x displaystyle mu mathbf A cap mathbf B x min mu mathbf A x mu mathbf B x Peretin vidpovidaye logichnij zv yazci i A B displaystyle mathbf A cap mathbf B najmensha nechitka pidmnozhina yaka mistitsya odnochasno v A displaystyle mathbf A i B displaystyle mathbf B Ob yednannya Ob yednannya nechitkih mnozhin A i V A V A B U m A u I m B u u displaystyle A B int U frac left mu A u widehat I mu B u right u Ob yednannya vidpovidaye logichnij zv yazci abo A V najbilsha nechitka pidmnozhina yaka vklyuchaye yak A tak i V z funkciyeyu prinalezhnosti µA B x max µA x µ B x Diz yunktivna suma A B A B B A A B A B displaystyle mathbf A oplus mathbf B mathbf A B cup mathbf B A mathbf A cup mathbf B mathbf A cap mathbf B A B A B B A A B z funkciyeyu prinalezhnosti µA B x max min µA x 1 µB x min 1 µA x µB x Dobutok A i V poznachayetsya AV i viznachayetsya A B U m A u m B u u displaystyle AB int U frac left mu A u mu B u right u Pidnesennya do stepenya a gt 0 A e U m A u e u displaystyle a gt 0 A e int U frac left mu A u right e u Koncentraciya chastkovij vipadok pidnesennya do stepenya C O N A A 2 displaystyle CON A A 2 Roztyaguvannya rozmivannya D I L A A displaystyle DIL A sqrt A Chitke vidobrazhennyaCej rozdil potrebuye dodatkovih posilan na dzherela dlya polipshennya jogo perevirnosti Bud laska dopomozhit udoskonaliti cej rozdil dodavshi posilannya na nadijni avtoritetni dzherela Zvernitsya na storinku obgovorennya za poyasnennyami ta dopomozhit vipraviti nedoliki Material bez dzherel mozhe buti piddano sumnivu ta vilucheno sichen 2020 Nehaj X i Y dvi zadanih universalnih mnozhini Govoryat sho nayavna funkciya viznachena na X zi znachennyam u Y yaksho u silu deyakogo zakonu f kozhnomu elementu X X displaystyle X in mathbb X vidpovidaye element y Y displaystyle y in mathbb Y Koli funkciyu f X Y displaystyle X to mathbb Y nazivayut vidobrazhennyam znachennya f x Y displaystyle f x in mathbb Y yakogo vona nabuvaye na elementi x X displaystyle x in mathbb X zvichajno nazivayut obrazom elementa x Obrazom mnozhini A X displaystyle A in mathbb X pri vidobrazhenni c Y displaystyle c in mathbb Y nazivayut mnozhinu f A Y displaystyle f A in mathbb Y tih elementiv Y sho ye obrazami elementiv mnozhini A Dane klasichne viznachennya vidobrazhennya yake u teoriyi nechitkih mnozhin nazivayut chitkim vidobrazhennyam Nechitke vidobrazhennyaCej rozdil potrebuye dodatkovih posilan na dzherela dlya polipshennya jogo perevirnosti Bud laska dopomozhit udoskonaliti cej rozdil dodavshi posilannya na nadijni avtoritetni dzherela Zvernitsya na storinku obgovorennya za poyasnennyami ta dopomozhit vipraviti nedoliki Material bez dzherel mozhe buti piddano sumnivu ta vilucheno sichen 2020 Nechitke vidobrazhennya ce en vidu f X 1 X 2 X n Y displaystyle varphi quad mathbf X 1 times mathbf X 2 times cdots times mathbf X n to mathbf Y Nechitki vidobrazhennya zadayutsya funkciyami nalezhnosti obraziv nechitkih mnozhin Tobto yaksho m k x k displaystyle mu k x k funkciya nalezhnosti mnozhini A k displaystyle mathbf A k ta nehaj B Y A 1 X 1 A 2 X 2 A n X n displaystyle mathbf B subset mathbf Y quad mathbf A 1 subset mathbf X 1 quad mathbf A 2 subset mathbf X 2 quad ldots quad mathbf A n subset mathbf X n Todi funkciya nalezhnosti mnozhini B zadayetsya u viglyadi m B s u p p x 1 x 2 x n X min m 1 x 1 m 2 x 2 m n x n m f x 1 x n y displaystyle mu mathbf B mathrm supp x 1 x 2 ldots x n in mathbf X min Big mu 1 x 1 mu 2 x 2 ldots mu n x n mu varphi x 1 ldots x n y Big Abo m f x 1 x n s u p p x 1 x n f x 1 x n min m a 1 x 1 m a n x n displaystyle mu varphi x 1 ldots x n mathrm supp x 1 ldots x n atop varphi x 1 ldots x n min Big mu a 1 x 1 ldots mu a n x n Big DzherelaO F Voloshin S O Mashenko 2011 Modeli ta metodi prijnyattya rishen Kiyiv V Ya Pivkin Ye P Bakulin D I Korenkov 2001 Nechitki mnozhini v sistemah upravlinnya navch posibnik Elektronnij resurs Ce nezavershena stattya z teoriyi mnozhin Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi