Підтримка
www.wikidata.uk-ua.nina.az
U teoriyi grafiv teorema Bruksa vstanovlyuye zv yazok mizh maksimalnim stepenem grafa i jogo hromatichnim chislom Zgidno z teoremoyu zv yaznij graf u yakomu kozhna vershina maye ne bilshe D susidiv vershini mozhut buti pofarbovani ne bilshe nizh v D koloriv za vinyatkom dvoh vipadkiv povnij graf i graf cikl neparnoyi dovzhini yaki vimagayut D 1 koloriv Povni grafi potrebuyut na odin kolir bilshe nizh yih maksimalnij stepin Voni ta neparni cikli ye yedinimi vinyatkami z teoremi Bruksa Teorema nazvana na chest en yakij opublikuvav dokaz v 1941 roci Rozmalovku z kilkistyu koloriv opisanih teoremoyu Bruksa inodi nazivayut zabarvlennyam Bruksa abo D rozmalovkoyu FormulyuvannyaDlya bud yakogo zv yaznogo neoriyentovanogo grafa G z maksimalnim stepenem D hromatichne chislo grafa G ne bilshe D za vinyatkom vipadkiv koli G klika abo neparnij cikl U cih vipadkah hromatichne chislo dorivnyuye D 1 DovedennyaLaslo Lovas Laszlo Lovasz 1975 daye sproshenij dokaz teoremi Bruksa Yaksho graf ne ye dvozv yaznim jogo dvozv yazni komponenti mozhna rozfarbuvati okremo a potim ob yednati rozmalovki Yaksho graf mistit vershinu v zi stupenem menshim D to algoritm zhadibnoyi rozmalovki yakij rozfarbovuye vershini zgidno z vidstannyu vid v dalni v pershu chergu blizhni v ostannyu vikoristovuye maksimum D koloriv Takim chinom najbilsh skladnimi vipadkami dlya dokazu ye dvozv yazni D regulyarni grafi z D 3 Lovas pokazuye sho mozhna znajti kistyakove derevo take sho dvoye nesumizhnih susidi u i w korenya v lezhat na derevi Privlasnimo vershinam u i w odin bud yakij kolir Zhadibnij algoritm pochinaye v u i w i prohodit reshtu vershin kistyakovogo dereva pidnimayuchis vid korenya do listya vikoristovuye maksimum D koloriv Koli vsi vershini vidminni vid v rozfarbovani voni mayut nezabarvlenogo batka tak sho vzhe pofarbovani kolori ne mozhut vikoristovuvati vsi vilni kolori oskilki dva susidi v u i w mayut odin kolir U nevikoristanij kolir rozfarbuyemo samu vershinu v UzagalnennyaBilsh zagalna versiya teoremi vidnositsya do en yaksho zadanij zv yaznij neoriyentovanij graf z maksimalnim stepenem D yakij ne ye ni klikoyu ni ciklom neparnoyi dovzhini i spisok D koloriv dlya kozhnoyi vershini mozhna vibrati kolir kozhnoyi vershini zi spisku tak sho niyaki dvi sumizhni vershini ne mayut odin kolir Inshimi slovami zaproponovane hromatichne chislo zv yazkovogo neoriyentovanogo grafa nikoli ne perevershuye D yaksho lishe G ne ye klikoyu abo ciklom neparnoyi dovzhini Teorema bula dovedena Vadimom Vizingom Dlya deyakih tipiv grafiv potribno navit menshe D koloriv en 1999 pokazav sho D 1 koloriv dostatno todi i lishe todi koli graf ne mistit D kliki ale pri comu D maye buti dostatno velikim Dlya grafiv bez trikutnikiv a takozh dlya bilsh zagalnogo klasu grafiv v yakih okoli vershin dostatno rozridzheni dostatno O D log D koloriv Stepin grafiv z yavlyayetsya takozh pri ocinci verhnoyi mezhi inshogo tipu zabarvlennya rebernoyi Te sho hromatichnij indeks ne perevishuye D 1 ye teoremoyu Vizinga Rozshirennya teoremi Bruksa na totalnu rozmalovku yake stverdzhuye sho totalne hromatichne chislo ne perevishuye D 2 bulo zaproponovano Behzadom ta Vizingom yak gipoteza Teorema Hajnal Semeredi pro rivnomirne rozfarbuvannya stverdzhuye sho bud yakij graf maye D 1 kolorovu rozmalovku pri yakij chislo vershin dvoh riznih koloriv vidriznyayetsya maksimum na odinicyu AlgoritmiD rozmalovku abo navit pripisanu D rozmalovku grafa zi stupenem D mozhna znajti za linijnij chas Vidomi efektivni algoritmi dlya poshuku rozmalovki Bruksa v paralelnih i rozpodilenih seredovishah obchislen PrimitkiChartrand Zhang 2009 ta Teorema 7 15 Brooks Theorem str 186 Chartrand Zhang 2009 ta Teorema 7 10 stor 182 Alon Krivalevich Sudakov 1999 Skulrattanakulchai 2006 Karloff 1989 Hajnal Szemeredi 1990 Panconesi Srinivasan 1995 Grable Panconesi 1998PosilannyaNoga Alon Michael Krivelevich Benny Sudakov Coloring graphs with sparse neighborhoods Journal of Combinatorial Theory Series B 1999 T 77 vip 1 S 73 82 DOI 10 1006 jctb 1999 1910 R L Brooks On colouring the nodes of a network Proc Cambridge Philosophical Society Math Phys Sci 1941 T 37 S 194 197 DOI 10 1017 S030500410002168X Gary Chartrand Ping Zhang Chromatic graph theory CRC Press Chapman amp Hall Boca Raton London New York 2009 S 187 Discrete Mathematics and its applications David A Grable Alessandro Panconesi Journal of Algorithms SODA 98 Proceedings of the 9th Annual ACM SIAM Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics Philadelphia PA USA 1998 T 37 S 473 480 DOI 10 1006 jagm 2000 1097 Peter Hajnal Brooks coloring in parallel SIAM Journal on Discrete Mathematics 1990 T 3 vip 1 S 74 80 DOI 10 1137 0403008 H J Karloff An NC algorithm for Brooks theorem Theoretical Computer Science 1989 T 68 vip 1 S 89 103 DOI 10 1016 0304 3975 89 90121 7 L Lovasz Three short proofs in graph theory Journal of Combinatorial Theory Series B 1975 T 19 S 269 271 DOI 10 1016 0095 8956 75 90089 1 Alessandro Panconesi The local nature of D coloring and its algorithmic applications Combinatorica 1995 T 15 vip 2 S 255 280 DOI 10 1007 BF01200759 Bruce Reed A strengthening of Brooks theorem Journal of Combinatorial Theory Series B 1999 T 76 vip 2 S 136 149 DOI 10 1006 jctb 1998 1891 San Skulrattanakulchai D List vertex coloring in linear time Information Processing Letters 2006 T 98 vip 3 S 101 106 DOI 10 1016 j ipl 2005 12 007 V G Vizing Metodi diskretnogo analizu v teoriyi kodiv i shem zbirnik naukovih prac Institut matematiki SO AN SSSR Novosibirsk 1976 T 29 S 3 10 Weisstein Eric W Brooks Theorem angl na sajti Wolfram MathWorld
Топ