Закон розподілу ймовірностей — це поняття теорії ймовірностей, яке для дискретної випадкової величини показує множину можливих подій з ймовірностями їхнього настання.
Закон розподілу часто використовується для характеризування випадкової величини, яка має не дуже велику кількість реалізацій.
Визначення
Нехай ξ — дискретна випадкова величина. Позначимо через і реалізації і відповідні ймовірності їхнього набуття цією випадковою величиною. Тоді законом розподілу ймовірностей випадкової величини ξ називається матриця
- .
У випадку, коли кількість станів скінченна (дорівнює n), вживаним також є інший запис:
- .
Приклади
1. Нехай підкидають монету правильної форми, тобто такої, що немає підстав вважати, що при її підкиданні частіше випадатиме одна зі сторін монети (герб чи цифра).
Побудуємо закон розподілу ймовірностей для монети. Оскільки випадання сторін рівноймовірне, а сторони дві, то ймовірність того, що випаде герб дорівнює . Це саме стосується і цифри. Якщо ми позначимо результат випадання герба через нуль, а результат випадання цифри одиницею, то ми отримаємо такий закон рівномірного розподілу ймовірностей для випадкової величини ξ:
- ,
- або, в іншій формі:
- .
Варто також відмітити, що , а також .
2. Нехай підкидають гральний кубик (тобто кубик з пронумерованими гранями від 1 до 6) з незміщеним центром мас. Тоді немає підстав вважати, що одна з граней випадатиме частіше іншої.
Оскільки граней 6, то випадання кожної з граней дорівнює . Нехай випадкова величина ξ — це цифра, яка випала в результаті підкидання грального кубика. Тоді ми отримаємо такий закон рівномірного розподілу ймовірностей для випадкової величини ξ:
- ,
- або, в іншій формі:
- .
Слід також додати, що даний приклад є окремим випадком поліномної схеми при n=1 для цієї схеми.
Див. також
Джерела
- Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
- Гнеденко Б. В. Курс теории вероятностей. — 6-е изд. — Москва : Наука, 1988. — 446 с.(рос.)
- Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Zakon rozpodilu jmovirnostej ce ponyattya teoriyi jmovirnostej yake dlya diskretnoyi vipadkovoyi velichini pokazuye mnozhinu mozhlivih podij z jmovirnostyami yihnogo nastannya Zakon rozpodilu chasto vikoristovuyetsya dlya harakterizuvannya vipadkovoyi velichini yaka maye ne duzhe veliku kilkist realizacij ViznachennyaNehaj 3 diskretna vipadkova velichina Poznachimo cherez xi displaystyle x i i pi displaystyle p i realizaciyi i vidpovidni jmovirnosti yihnogo nabuttya ciyeyu vipadkovoyu velichinoyu Todi zakonom rozpodilu jmovirnostej vipadkovoyi velichini 3 nazivayetsya matricya 3 x1x2 xn p1p2 pn displaystyle xi begin pmatrix x 1 amp x 2 amp amp x n amp p 1 amp p 2 amp amp p n amp end pmatrix U vipadku koli kilkist staniv skinchenna dorivnyuye n vzhivanim takozh ye inshij zapis 3 x1 with probability p1x2 with probability p2 xn with probability pn displaystyle xi begin cases x 1 amp mbox with probability p 1 x 2 amp mbox with probability p 2 x n amp mbox with probability p n end cases Prikladi1 Nehaj pidkidayut monetu pravilnoyi formi tobto takoyi sho nemaye pidstav vvazhati sho pri yiyi pidkidanni chastishe vipadatime odna zi storin moneti gerb chi cifra Pobuduyemo zakon rozpodilu jmovirnostej dlya moneti Oskilki vipadannya storin rivnojmovirne a storoni dvi to jmovirnist togo sho vipade gerb dorivnyuye 12 displaystyle frac 1 2 Ce same stosuyetsya i cifri Yaksho mi poznachimo rezultat vipadannya gerba cherez nul a rezultat vipadannya cifri odiniceyu to mi otrimayemo takij zakon rivnomirnogo rozpodilu jmovirnostej dlya vipadkovoyi velichini 3 3 011212 displaystyle xi begin pmatrix 0 amp 1 frac 1 2 amp frac 1 2 end pmatrix dd abo v inshij formi 3 0 with probability 121 with probability 12 displaystyle xi begin cases 0 amp mbox with probability frac 1 2 1 amp mbox with probability frac 1 2 end cases Varto takozh vidmititi sho L 3 B 12 displaystyle mathcal L xi B frac 1 2 a takozh L 3 Bi 1 12 displaystyle mathcal L xi Bi 1 frac 1 2 2 Nehaj pidkidayut gralnij kubik tobto kubik z pronumerovanimi granyami vid 1 do 6 z nezmishenim centrom mas Todi nemaye pidstav vvazhati sho odna z granej vipadatime chastishe inshoyi Oskilki granej 6 to vipadannya kozhnoyi z granej dorivnyuye 16 displaystyle frac 1 6 Nehaj vipadkova velichina 3 ce cifra yaka vipala v rezultati pidkidannya gralnogo kubika Todi mi otrimayemo takij zakon rivnomirnogo rozpodilu jmovirnostej dlya vipadkovoyi velichini 3 3 123456161616161616 displaystyle xi begin pmatrix 1 amp 2 amp 3 amp 4 amp 5 amp 6 frac 1 6 amp frac 1 6 amp frac 1 6 amp frac 1 6 amp frac 1 6 amp frac 1 6 end pmatrix dd abo v inshij formi 3 1 with probability 162 with probability 163 with probability 164 with probability 165 with probability 166 with probability 16 displaystyle xi begin cases 1 amp mbox with probability frac 1 6 2 amp mbox with probability frac 1 6 3 amp mbox with probability frac 1 6 4 amp mbox with probability frac 1 6 5 amp mbox with probability frac 1 6 6 amp mbox with probability frac 1 6 end cases Slid takozh dodati sho danij priklad ye okremim vipadkom polinomnoyi shemi pri n 1 dlya ciyeyi shemi Div takozhBinomialnij rozpodil Vipadkova velichina Diskretna vipadkova velichina Rozpodil jmovirnostej Rozpodil Bernulli Polinomna shema Funkciya rozpodilu jmovirnostej Funkciya shilnosti Rozpodil LaplasaDzherelaKartashov M V Imovirnist procesi statistika Kiyiv VPC Kiyivskij universitet 2007 504 s Gnedenko B V Kurs teorii veroyatnostej 6 e izd Moskva Nauka 1988 446 s ros Gihman I I Skorohod A V Yadrenko M V Teoriya veroyatnostej i matematicheskaya statistika Kiyiv Visha shkola 1988 436 s ros