У теорії графів домінівна́ множина́ ре́бер (або реберна домінівна́ множина́) графа G = (V, E) — це підмножина D ⊆ E, така, що будь-яке ребро не з D суміжне щонайменше одному ребру з D. На рисунках (a)–(d) наведено приклади домінівних множин ребер (червоні ребра).
Найме́нша домінівна́ множина́ ре́бер — це домінівна множина ребер найменшого розміру. На рисунках (a) і (b) наведено приклади найменших домінівних множин ребер (можна перевірити, що для даного графа не існує домінівної множини з двох ребер).
Властивості
Домінівна множина ребер для графа G є домінівною множиною реберного графа L(G), і навпаки.
Будь-яке максимальне парування завжди є реберною домінівною множиною. На рисунках (b) та (d) наведено приклади максимальних паросочетань.
Більше того, розмір найменшої домінівної множини ребер дорівнює розміру найменшого максимального парування. Найменше максимальне парування — це найменша домінівна множина ребер. Малюнок (b) дає приклад найменшого максимального парування. Найменша домінівна множина ребер не обов'язково є найменшим максимальним паруванням, що ілюструє малюнок (a). Однак, якщо задано найменшу домінівну множину ребер D, легко знайти найменше максимальне парування з |D| ребрами (див., наприклад, статтю Міхаліса Яннакакіса і Фаніци Гаврила).
Алгоритми та обчислювальна складність
Визначення, чи існує домінівна множина ребер даного розміру для даного графа, є NP-повною задачею (а тому знаходження найменшої домінівної множини ребер є NP-складною задачею). Міхаліс Яннакакіс і Фаніца Гаврил показали, що задача є NP-повною навіть для двочасткового графа з найбільшим степенем вершин 3, а також для планарного графа з найбільшим степенем вершин 3.
Існує простий апроксимаційний алгоритм поліноміального часу з коефіцієнтом апроксимації 2 — знаходимо будь-яке максимальне парування. Максимальне парування є домінівною множиною ребер. Більш того, максимальне парування M може бути вдвічі більшим за розміром від найменшого максимального парівання, а найменше максимальне парування має такий самий розмір, що й найменша домінівна множина ребер.
Можна також апроксимувати з коефіцієнтом 2 реберно-зважену версію задачі, але алгоритм значно складніший.
Хлєбіков і Хлєбікова показали, що пошук з коефіцієнтом, кращим ніж (7/6), є NP-складною задачею.
Примітки
Література
- Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-Spaccamela, Marco Protasi. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. — 2nd. — Berin, Heidelberg, New York : Springer-Verlag, 2003. — ..
- Найменша домінівна множина ребер (оптимізаційна версія) — задача GT3 в Додатку B (стор. 370).
- Найменше максимальне парування (оптимізаційна версія) — задача GT10 у Додатку B (стор. 374).
- Miroslav Chlebík, Janka Chlebíková. Approximation hardness of edge dominating set problems // Journal of Combinatorial Optimization. — 2006. — Vol. 11, iss. 3 (16 June). — P. 279–290. — DOI: ..
- Michael R. Garey, David S. Johnson. . — W.H. Freeman, 1979. — ..
- Домінівна множина ребер (у версії розв'язності) обговорюється в задачі про домінівну множину, задачі GT2 в Додатку A1.1.
- Найменше максимальне парування (у версії розв'язності) — задача GT10 у Додатку A1.1.
- Mihalis Yannakakis, Fanica Gavril. Edge dominating sets in graphs // SIAM Journal on Applied Mathematics. — 1980. — Vol. 38, iss. 3 (16 June). — P. 364–372. — DOI: ..
- Toshihiro Fujito, Hiroshi Nagamochi. A 2-approximation algorithm for the minimum weight edge dominating set problem // Discrete Applied Mathematics. — 2002. — Vol. 118, iss. 3 (16 June). — P. 199–207. — DOI: .
Посилання
- Pierluigi Crescenzi, Viggo Kann, Magnús Halldórsson, Marek Karpinski, Gerhard Woeginger (2000), «A compendium of NP optimization problems»:
- Найменша домінівна множина ребер,
- Найменше максимальне парування.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
U teoriyi grafiv dominivna mnozhina re ber abo reberna dominivna mnozhina grafa G V E ce pidmnozhina D E taka sho bud yake rebro ne z D sumizhne shonajmenshe odnomu rebru z D Na risunkah a d navedeno prikladi dominivnih mnozhin reber chervoni rebra Prikladi dominivnih mnozhin reber Najme nsha dominivna mnozhina re ber ce dominivna mnozhina reber najmenshogo rozmiru Na risunkah a i b navedeno prikladi najmenshih dominivnih mnozhin reber mozhna pereviriti sho dlya danogo grafa ne isnuye dominivnoyi mnozhini z dvoh reber VlastivostiDominivna mnozhina reber dlya grafa G ye dominivnoyu mnozhinoyu rebernogo grafa L G i navpaki Bud yake maksimalne paruvannya zavzhdi ye rebernoyu dominivnoyu mnozhinoyu Na risunkah b ta d navedeno prikladi maksimalnih parosochetan Bilshe togo rozmir najmenshoyi dominivnoyi mnozhini reber dorivnyuye rozmiru najmenshogo maksimalnogo paruvannya Najmenshe maksimalne paruvannya ce najmensha dominivna mnozhina reber Malyunok b daye priklad najmenshogo maksimalnogo paruvannya Najmensha dominivna mnozhina reber ne obov yazkovo ye najmenshim maksimalnim paruvannyam sho ilyustruye malyunok a Odnak yaksho zadano najmenshu dominivnu mnozhinu reber D legko znajti najmenshe maksimalne paruvannya z D rebrami div napriklad stattyu Mihalisa Yannakakisa i Fanici Gavrila Algoritmi ta obchislyuvalna skladnistViznachennya chi isnuye dominivna mnozhina reber danogo rozmiru dlya danogo grafa ye NP povnoyu zadacheyu a tomu znahodzhennya najmenshoyi dominivnoyi mnozhini reber ye NP skladnoyu zadacheyu Mihalis Yannakakis i Fanica Gavril pokazali sho zadacha ye NP povnoyu navit dlya dvochastkovogo grafa z najbilshim stepenem vershin 3 a takozh dlya planarnogo grafa z najbilshim stepenem vershin 3 Isnuye prostij aproksimacijnij algoritm polinomialnogo chasu z koeficiyentom aproksimaciyi 2 znahodimo bud yake maksimalne paruvannya Maksimalne paruvannya ye dominivnoyu mnozhinoyu reber Bilsh togo maksimalne paruvannya M mozhe buti vdvichi bilshim za rozmirom vid najmenshogo maksimalnogo parivannya a najmenshe maksimalne paruvannya maye takij samij rozmir sho j najmensha dominivna mnozhina reber Mozhna takozh aproksimuvati z koeficiyentom 2 reberno zvazhenu versiyu zadachi ale algoritm znachno skladnishij Hlyebikov i Hlyebikova pokazali sho poshuk z koeficiyentom krashim nizh 7 6 ye NP skladnoyu zadacheyu PrimitkiYannakakis Gavril 1980 Fujito Nagamochi 2002 Chlebik Chlebikova 2006 LiteraturaGiorgio Ausiello Pierluigi Crescenzi Giorgio Gambosi Viggo Kann Alberto Marchetti Spaccamela Marco Protasi Complexity and Approximation Combinatorial Optimization Problems and Their Approximability Properties 2nd Berin Heidelberg New York Springer Verlag 2003 ISBN 3 540 65431 3 Najmensha dominivna mnozhina reber optimizacijna versiya zadacha GT3 v Dodatku B stor 370 Najmenshe maksimalne paruvannya optimizacijna versiya zadacha GT10 u Dodatku B stor 374 dd Miroslav Chlebik Janka Chlebikova Approximation hardness of edge dominating set problems Journal of Combinatorial Optimization 2006 Vol 11 iss 3 16 June P 279 290 DOI 10 1007 s10878 006 7908 0 Michael R Garey David S Johnson W H Freeman 1979 ISBN 0 7167 1045 5 Dominivna mnozhina reber u versiyi rozv yaznosti obgovoryuyetsya v zadachi pro dominivnu mnozhinu zadachi GT2 v Dodatku A1 1 Najmenshe maksimalne paruvannya u versiyi rozv yaznosti zadacha GT10 u Dodatku A1 1 dd Mihalis Yannakakis Fanica Gavril Edge dominating sets in graphs SIAM Journal on Applied Mathematics 1980 Vol 38 iss 3 16 June P 364 372 DOI 10 1137 0138030 Toshihiro Fujito Hiroshi Nagamochi A 2 approximation algorithm for the minimum weight edge dominating set problem Discrete Applied Mathematics 2002 Vol 118 iss 3 16 June P 199 207 DOI 10 1016 S0166 218X 00 00383 8 PosilannyaPierluigi Crescenzi Viggo Kann Magnus Halldorsson Marek Karpinski Gerhard Woeginger 2000 A compendium of NP optimization problems Najmensha dominivna mnozhina reber Najmenshe maksimalne paruvannya dd