Деревність неорієнтованого графа — це найменша кількість лісів, на які можна розкласти його ребра. Еквівалентно це є найменшим числом кістякових дерев, необхідних для покриття ребер графа.
Приклад
На малюнку показано повний двочастковий граф з розфарбованими в різні кольори розбиття графа на три ліси. не можна розбити на менше лісів, оскільки будь-який ліс на восьми вершинах має максимум сім ребер, тоді як весь граф має шістнадцять ребер, що більше, ніж подвоєне число ребер одного лісу. Отже, деревність графа дорівнює трьом.
Деревність як міра щільності
Деревність графа є мірою щільності графа — графи з великим числом ребер мають високу деревність, а графи з високою деревністю повинні мати щільні подграфи.
Точніше, оскільки будь-який -вершинний ліс має не більше ребер, деревність графа з вершинами і ребрами не менша . Крім того, підграфи будь-якого графа не можуть мати деревності, більшої за деревність самого графа, або, еквівалентно, деревність графа має бути не меншою за найбільшу деревність його підграфів. [en] довів, що ці два факти можна скомбінувати для характеризації деревності — якщо і позначають відповідно число вершин і ребер довільного підграфа даного графа, тоді деревність графа дорівнює
Будь-який планарний граф з вершинами має максимум ребер, звідки випливає формула Неша-Вільямса, що деревність планарного графа не перевищує трьох. Шнайдер використовував спеціальну декомпозицію планарного графа на три ліси, звану лісом Шнайдера, щоб знаходити вкладення у вигляді прямих відрізків будь-якого графа в решітку малої площі.
Алгоритми
Деревність графа можна виразити як частковий випадок загальнішої задачі [en], в якій потрібно виразити число елементів матроїда через об'єднання меншої кількості незалежних множин. Як наслідок, деревність можна обчислти за допомогою алгоритму з поліноміальним часом виконання.
Пов'язані концепції
Зіркова деревність графа — це розмір найменшого лісу, кожне дерево якого є зіркою (дерево з максимум однією вершиною, що не є листком), на які можна розкласти ребра графа. Якщо саме дерево не є зіркою, його зіркова деревність дорівнює двом, що можна побачити, якщо розбити ребра на дві підмножини — з непарною і парною відстанями від кореня. Отже, зоряна деревність графа не менша від його деревності і не більша від його подвоєної деревності.
Лінійна деревність графа — це розмір найменшого лінійного лісу (ліс, у якому всі вершини інцидентні максимум двом ребрам), на який можна розкласти ребра графа. Лінійна деревність графа тісно пов'язана з його найбільшим степенем вершин та його числом нахилів.
(Псевдодеревність) графа — це найменше число псевдолісів, на які можна розкласти ребра. Еквівалентно це число дорівнює найбільшому відношенню числа ребер до числа вершин у будь-якому підграфі графа. Як і у випадку деревності, псевдодеревність має матроїдну структуру, що забезпечує обчислювальну ефективність.
Товщина графа — це найменша кількість планарних підграфів, на які можна розділити ребра. Оскільки будь-який планарний граф має деревність три, товщина будь-якого графа не менша від третини деревності і не більша від деревності.
Виродженість графа — це найбільше число, за всіма породженими підграфами графа, мінімуму степенів вершин підграфа. Виродженість графа з деревністю не менше і не більше . Число розфарбування графа, відоме також як число Секереша — Вілфа, завжди дорівнює його виродженості плюс 1.
Потужність графа — це дробове значення, ціла частина якого дає найбільше число неперетинних кістяків, які можна намалювати на графі. Обчислення цього числа є задачею пакування, двоїстою до задачі покриття, що виникає із задачі визначення деревності.
Дробова деревність — це вдосконалена деревність, визначена для графа як Іншими словами, деревність графа — це стеля дробової деревності.
(a, b)-розкладаність узагальнює деревність. Граф є -розкладаним, якщо його ребра можна розкласти на множин, кожна з яких дає ліс, за винятком однієї, яка дає граф з найбільшим степенем . Граф із деревністю є -розкладаним.
Примітки
Література
- N. Alon. The linear arboricity of graphs // . — 1988. — Т. 62, вип. 3. — С. 311–325. — DOI: .
- B. Chen, M. Matsumoto, J. Wang, Z. Zhang, J. Zhang. A short proof of Nash-Williams' theorem for the arboricity of a graph // Graphs and Combinatorics. — 1994. — Т. 10, вип. 1. — С. 27–28. — DOI: .
- P. Erdős, A. Hajnal. On chromatic number of graphs and set-systems // . — 1966. — Т. 17, вип. 1–2. — С. 61–99. — DOI: .
- H. N. Gabow, H. H. Westermann. Forests, frames, and games: Algorithms for matroid sums and applications // . — 1992. — Т. 7, вип. 1. — С. 465–497. — DOI: .
- S. L. Hakimi, J. Mitchem, E. E. Schmeichel. Star arboricity of graphs // . — 1996. — Т. 149. — С. 93–98. — DOI: .
- T. R. Jensen, B. Toft. Graph Coloring Problems. — New York : Wiley-Interscience, 1995. — .
- C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs // Journal of the London Mathematical Society. — 1961. — Т. 36, вип. 1. — С. 445–450. — DOI: .
- C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests // Journal of the London Mathematical Society. — 1964. — Т. 39, вип. 1. — С. 12. — DOI: .
- W. Schnyder. Proc. 1st ACM/SIAM Symposium on Discrete Algorithms (SODA). — 1990. — С. 138–148.
- G. Szekeres, H. S. Wilf. An inequality for the chromatic number of a graph // . — 1968. — DOI: .
- W. T. Tutte. On the problem of decomposing a graph into n connected factors // Journal of the London Mathematical Society. — 1961. — Т. 36, вип. 1. — С. 221–230. — DOI: .
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Derevnist neoriyentovanogo grafa ce najmensha kilkist lisiv na yaki mozhna rozklasti jogo rebra Ekvivalentno ce ye najmenshim chislom kistyakovih derev neobhidnih dlya pokrittya reber grafa PrikladRozbittya povnogo dvochastkovogo grafa K 4 4 displaystyle K 4 4 na tri lisi sho pokazuye sho jogo derevnist dorivnyuye trom Na malyunku pokazano povnij dvochastkovij graf K 4 4 displaystyle K 4 4 z rozfarbovanimi v rizni kolori rozbittya grafa na tri lisi K 4 4 displaystyle K 4 4 ne mozhna rozbiti na menshe lisiv oskilki bud yakij lis na vosmi vershinah maye maksimum sim reber todi yak ves graf maye shistnadcyat reber sho bilshe nizh podvoyene chislo reber odnogo lisu Otzhe derevnist grafa K 4 4 displaystyle K 4 4 dorivnyuye trom Derevnist yak mira shilnostiDerevnist grafa ye miroyu shilnosti grafa grafi z velikim chislom reber mayut visoku derevnist a grafi z visokoyu derevnistyu povinni mati shilni podgrafi Tochnishe oskilki bud yakij n displaystyle n vershinnij lis maye ne bilshe n 1 displaystyle n 1 reber derevnist grafa z n displaystyle n vershinami i m displaystyle m rebrami ne mensha m n 1 displaystyle lceil m n 1 rceil Krim togo pidgrafi bud yakogo grafa ne mozhut mati derevnosti bilshoyi za derevnist samogo grafa abo ekvivalentno derevnist grafa maye buti ne menshoyu za najbilshu derevnist jogo pidgrafiv en doviv sho ci dva fakti mozhna skombinuvati dlya harakterizaciyi derevnosti yaksho n S displaystyle n S i m S displaystyle m S poznachayut vidpovidno chislo vershin i reber dovilnogo pidgrafa S displaystyle S danogo grafa todi derevnist grafa dorivnyuye max m S n S 1 displaystyle max lceil m S n S 1 rceil Bud yakij planarnij graf z n displaystyle n vershinami maye maksimum 3 n 6 displaystyle 3n 6 reber zvidki viplivaye formula Nesha Vilyamsa sho derevnist planarnogo grafa ne perevishuye troh Shnajder vikoristovuvav specialnu dekompoziciyu planarnogo grafa na tri lisi zvanu lisom Shnajdera shob znahoditi vkladennya u viglyadi pryamih vidrizkiv bud yakogo grafa v reshitku maloyi ploshi AlgoritmiDerevnist grafa mozhna viraziti yak chastkovij vipadok zagalnishoyi zadachi en v yakij potribno viraziti chislo elementiv matroyida cherez ob yednannya menshoyi kilkosti nezalezhnih mnozhin Yak naslidok derevnist mozhna obchislti za dopomogoyu algoritmu z polinomialnim chasom vikonannya Pov yazani koncepciyiZirkova derevnist grafa ce rozmir najmenshogo lisu kozhne derevo yakogo ye zirkoyu derevo z maksimum odniyeyu vershinoyu sho ne ye listkom na yaki mozhna rozklasti rebra grafa Yaksho same derevo ne ye zirkoyu jogo zirkova derevnist dorivnyuye dvom sho mozhna pobachiti yaksho rozbiti rebra na dvi pidmnozhini z neparnoyu i parnoyu vidstanyami vid korenya Otzhe zoryana derevnist grafa ne mensha vid jogo derevnosti i ne bilsha vid jogo podvoyenoyi derevnosti Linijna derevnist grafa ce rozmir najmenshogo linijnogo lisu lis u yakomu vsi vershini incidentni maksimum dvom rebram na yakij mozhna rozklasti rebra grafa Linijna derevnist grafa tisno pov yazana z jogo najbilshim stepenem vershin ta jogo chislom nahiliv Psevdoderevnist grafa ce najmenshe chislo psevdolisiv na yaki mozhna rozklasti rebra Ekvivalentno ce chislo dorivnyuye najbilshomu vidnoshennyu chisla reber do chisla vershin u bud yakomu pidgrafi grafa Yak i u vipadku derevnosti psevdoderevnist maye matroyidnu strukturu sho zabezpechuye obchislyuvalnu efektivnist Tovshina grafa ce najmensha kilkist planarnih pidgrafiv na yaki mozhna rozdiliti rebra Oskilki bud yakij planarnij graf maye derevnist tri tovshina bud yakogo grafa ne mensha vid tretini derevnosti i ne bilsha vid derevnosti Virodzhenist grafa ce najbilshe chislo za vsima porodzhenimi pidgrafami grafa minimumu stepeniv vershin pidgrafa Virodzhenist grafa z derevnistyu a displaystyle a ne menshe a displaystyle a i ne bilshe 2 a 1 displaystyle 2a 1 Chislo rozfarbuvannya grafa vidome takozh yak chislo Sekeresha Vilfa zavzhdi dorivnyuye jogo virodzhenosti plyus 1 Potuzhnist grafa ce drobove znachennya cila chastina yakogo daye najbilshe chislo neperetinnih kistyakiv yaki mozhna namalyuvati na grafi Obchislennya cogo chisla ye zadacheyu pakuvannya dvoyistoyu do zadachi pokrittya sho vinikaye iz zadachi viznachennya derevnosti Drobova derevnist ce vdoskonalena derevnist viznachena dlya grafa G displaystyle G yak max m S n S 1 S G displaystyle max m S n S 1 mid S subseteq G Inshimi slovami derevnist grafa ce stelya drobovoyi derevnosti a b rozkladanist uzagalnyuye derevnist Graf ye a b displaystyle a b rozkladanim yaksho jogo rebra mozhna rozklasti na a 1 displaystyle a 1 mnozhin kozhna z yakih daye lis za vinyatkom odniyeyi yaka daye graf z najbilshim stepenem b displaystyle b Graf iz derevnistyu a displaystyle a ye a 0 displaystyle a 0 rozkladanim PrimitkiGabow Westermann 1992 Szekeres Wilf 1968 Jensen Toft 1995 s 77f LiteraturaN Alon The linear arboricity of graphs 1988 T 62 vip 3 S 311 325 DOI 10 1007 BF02783300 B Chen M Matsumoto J Wang Z Zhang J Zhang A short proof of Nash Williams theorem for the arboricity of a graph Graphs and Combinatorics 1994 T 10 vip 1 S 27 28 DOI 10 1007 BF01202467 P Erdos A Hajnal On chromatic number of graphs and set systems 1966 T 17 vip 1 2 S 61 99 DOI 10 1007 BF02020444 H N Gabow H H Westermann Forests frames and games Algorithms for matroid sums and applications 1992 T 7 vip 1 S 465 497 DOI 10 1007 BF01758774 S L Hakimi J Mitchem E E Schmeichel Star arboricity of graphs 1996 T 149 S 93 98 DOI 10 1016 0012 365X 94 00313 8 T R Jensen B Toft Graph Coloring Problems New York Wiley Interscience 1995 ISBN 0 471 02865 7 C St J A Nash Williams Edge disjoint spanning trees of finite graphs Journal of the London Mathematical Society 1961 T 36 vip 1 S 445 450 DOI 10 1112 jlms s1 36 1 445 C St J A Nash Williams Decomposition of finite graphs into forests Journal of the London Mathematical Society 1964 T 39 vip 1 S 12 DOI 10 1112 jlms s1 39 1 12 W Schnyder Proc 1st ACM SIAM Symposium on Discrete Algorithms SODA 1990 S 138 148 G Szekeres H S Wilf An inequality for the chromatic number of a graph 1968 DOI 10 1016 s0021 9800 68 80081 x W T Tutte On the problem of decomposing a graph into n connected factors Journal of the London Mathematical Society 1961 T 36 vip 1 S 221 230 DOI 10 1112 jlms s1 36 1 221