Граф Турана T(n,r) — це граф, утворений розкладанням n вершин на r підмножин, з якомога ближчим розміром, і вершини в цьому графі з'єднані ребром, якщо вони належать різним підмножинам. Граф буде мати підмножин розміром і підмножин розміром . Таким чином, це повний r-частковий граф
Граф Турана | |
---|---|
Граф Турана T(13,4) | |
Названо на честь | Пал Туран |
(Вершин) | n |
(Ребер) | ~ |
(Радіус) | |
(Діаметр) | |
(Обхват) | |
Хроматичне число | r |
Позначення | T(n,r) |
Кожна вершина має степінь або , або . Кількість ребер дорівнює
Граф є регулярним, якщо n ділиться на r.
Теорема Турана
Графи Турана названо на честь Пала Турана, який використав їх для доведення теореми Турана, важливого результату в екстремальній теорії графів.
За принципом Діріхле, будь-яка множина з r + 1 вершин у графі Турана включає дві вершини з однієї й тієї ж частки графа. Таким чином, граф Турана не містить кліки розміру r + 1. Згідно з теоремою Турана, граф Турана має максимально можливе число ребер серед усіх графів без клік розміру r + 1, що мають n вершин. Киваш і Судаков (Keevash, Sudakov, 2003) показали, що граф Турана є єдиним графом без клік розміру r + 1, що має порядок n, у якому будь-яка підмножина з αn вершин має щонайменше ребер, якщо α досить близьке до 1. [en] розширює теорему Турана, обмежуючи число ребер у графі, який не має підграфом фіксованого графа Турана. Внаслідок цієї теореми в теорії екстремальних графів для будь-якого забороненого підграфа можна довести схожі межі, залежні від хроматичного числа підграфа.
Особливі випадки
Деякі величини параметра r графів Турана призводять до чудових графів, які вивчаються окремо.
Граф Турана T(2n,n) можна отримати видаленням досконалого парування з повного графа K2n. Як показав Робертс (Roberts, 1969), рамковість цього графа дорівнює рівно n. Цей граф іноді називають графом Робертса. Цей граф є також 1-[en] n-вимірного кографа. Наприклад, граф T(6,3) = K2,2,2 — це граф правильного октаедра. Якщо n пар приходять на вечірку і кожна людина тисне руку всім, окрім свого партнера, то цей граф описує множину рукостискань. З цієї причини його також називають графом коктейль-вечірки.
Граф Турана T(n,2) — це повний двочастковий граф, і, якщо n парне, це граф Мура. Якщо r — це дільник n, граф Турана є симетричним і сильно регулярним, хоча деякі автори вважають, що графи Турана є тривіальним випадком сильної регулярності і тому виключають їх з визначення строго регулярних графів.
Граф Турана має 3a2b найбільших клік, де 3a + 2b = n та b ≤ 2. Кожна найбільша кліка утворюється вибором однієї вершини з кожної частки. Це число найбільших клік є найбільшим можливим серед усіх графів з n вершинами, незалежно від числа ребер у графі (Мун і Мозер, 1965). Ці графи іноді називають графами Муна-Мозера.
Інші властивості
Будь-який граф Турана є кографом. Таким чином, його можна утворити з окремих вершин послідовністю операцій диз'юнктного об'єднання і доповнення. Зокрема, таку послідовність можна почати утворенням усіх незалежних множин графа Турана як диз'юнктного об'єднання ізольованих вершин. Тоді весь граф є доповненням диз'юнктного об'єднання доповнень цих незалежних множин.
Чао і Новацький (Chao, Novacky, 1982) показали, що графи Турана хроматично єдині — ніякі інші графи не мають таких самих хроматичних многочленів. Нікіфоров (Nikiforov, 2005) використовував графи Турана для знаходження нижньої межі суми k-х власних значень графа і його доповнення.
Фолс, Повел і Сноїнк (Falls, Powell, Snoeyink) розробили ефективний алгоритм для пошуку кластерів ортологічних груп генів у геномі поданням даних як графа і пошуком великих підграфів Турана.
Графи Турана мають також низку цікавих властивостей, пов'язаних з [en]. Пор і Вуд (Pór, Wood, 2005) дають нижню межу Ω((rn)3/4) будь-якого тривимірного вкладення графа Турана. Вітсенгаузен (Witsenhausen, 1974) висловив гіпотезу, що найбільша сума квадратів відстаней між n точками всередині кулі Rd одиничного діаметра досягається на конфігурації, утвореній вкладенням графа Турана у вершини правильного симплекса.
Граф G з n вершинами є підграфом графа Турана T(n,r) тоді й лише тоді, коли G допускає рівномірне розфарбування в r кольорів. Розкладання графа Турана на незалежні множини відповідає розкладанню G на класи кольорів. Зокрема, граф Турана є єдиним максимальним графом з n вершинами з рівномірним розфарбуванням у r кольорів.
Література
- C. Y. Chao, G. A. Novacky. On maximally saturated graphs // Discrete Mathematics. — 1982. — Т. 41, вип. 2 (21 червня). — С. 139–143. — DOI: .
- Craig Falls, Bradford Powell, Jack Snoeyink. Computing high-stringency COGs using Turán type graphs. з джерела 17 квітня 2021. Процитовано 4 січня 2021.
- Peter Keevash, Benny Sudakov. Local density in graphs with forbidden subgraphs // Combinatorics, Probability and Computing. — 2003. — Т. 12, вип. 2 (21 червня). — С. 139–153. — DOI: .
- J. W. Moon, L. Moser. On cliques in graphs // Israel Journal of Mathematics. — 1965. — Т. 3 (21 червня). — С. 23–28. — DOI: .
- Vladimir Nikiforov. Eigenvalue problems of Nordhaus-Gaddum type. — 2005. — 21 червня. — arXiv:math.CO/0506260.
- Attila Pór, David R Wood. Proc. Int. Symp. Graph Drawing (GD 2004). — Lecture Notes in Computer Science no. 3383, Springer-Verlag, 2005. — С. 395–402. — DOI:
- F. S. Roberts. Recent Progress in Combinatorics. — Academic Press, 1969. — С. 301–310.
- P. Turán. On an extremal problem in graph theory // Matematiko Fizicki Lapok. — 1941. — Т. 48 (21 червня). — С. 436–452.
- H. S. Witsenhausen. On the maximum of the sum of squared distances under a diameter constraint // American Mathematical Monthly. — The American Mathematical Monthly, Vol. 81, No. 10, 1974. — Т. 81, вип. 10 (21 червня). — С. 1100–1101. — DOI: .
Посилання
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Graf Turana T n r ce graf utvorenij rozkladannyam n vershin na r pidmnozhin z yakomoga blizhchim rozmirom i vershini v comu grafi z yednani rebrom yaksho voni nalezhat riznim pidmnozhinam Graf bude mati n mod r displaystyle n bmod r pidmnozhin rozmirom n r displaystyle lceil n r rceil i r n mod r displaystyle r n bmod r pidmnozhin rozmirom n r displaystyle lfloor n r rfloor Takim chinom ce povnij r chastkovij grafGraf TuranaGraf Turana T 13 4 Nazvano na chest Pal TuranVershin nReber r 1 n 2 2 r displaystyle frac r 1 n 2 2r Radius r 1 2 r n 2 1 otherwise displaystyle left begin array ll infty amp r 1 2 amp r leq n 2 1 amp text otherwise end array right Diametr r 1 1 r n 2 otherwise displaystyle left begin array ll infty amp r 1 1 amp r n 2 amp text otherwise end array right Obhvat r 1 n 3 r 2 4 r 2 3 otherwise displaystyle left begin array ll infty amp r 1 vee n leq 3 wedge r leq 2 4 amp r 2 3 amp text otherwise end array right Hromatichne chislo rPoznachennya T n r K n r n r n r n r displaystyle K lceil n r rceil lceil n r rceil ldots lfloor n r rfloor lfloor n r rfloor Kozhna vershina maye stepin abo n n r displaystyle n lceil n r rceil abo n n r displaystyle n lfloor n r rfloor Kilkist reber dorivnyuye 1 2 n 2 n mod r n r 2 r n mod r n r 2 1 1 r n 2 2 displaystyle frac 1 2 n 2 n bmod r lceil n r rceil 2 r n bmod r lfloor n r rfloor 2 leq left 1 frac 1 r right frac n 2 2 Graf ye regulyarnim yaksho n dilitsya na r Teorema TuranaDokladnishe Grafi Turana nazvano na chest Pala Turana yakij vikoristav yih dlya dovedennya teoremi Turana vazhlivogo rezultatu v ekstremalnij teoriyi grafiv Za principom Dirihle bud yaka mnozhina z r 1 vershin u grafi Turana vklyuchaye dvi vershini z odniyeyi j tiyeyi zh chastki grafa Takim chinom graf Turana ne mistit kliki rozmiru r 1 Zgidno z teoremoyu Turana graf Turana maye maksimalno mozhlive chislo reber sered usih grafiv bez klik rozmiru r 1 sho mayut n vershin Kivash i Sudakov Keevash Sudakov 2003 pokazali sho graf Turana ye yedinim grafom bez klik rozmiru r 1 sho maye poryadok n u yakomu bud yaka pidmnozhina z an vershin maye shonajmenshe r 1 2 r 2 a 1 n 2 displaystyle frac r 1 2r 2 alpha 1 n 2 reber yaksho a dosit blizke do 1 en rozshiryuye teoremu Turana obmezhuyuchi chislo reber u grafi yakij ne maye pidgrafom fiksovanogo grafa Turana Vnaslidok ciyeyi teoremi v teoriyi ekstremalnih grafiv dlya bud yakogo zaboronenogo pidgrafa mozhna dovesti shozhi mezhi zalezhni vid hromatichnogo chisla pidgrafa Osoblivi vipadkiOktaedr vershini i rebra yakogo utvoryuyut graf Turana T 6 3 Deyaki velichini parametra r grafiv Turana prizvodyat do chudovih grafiv yaki vivchayutsya okremo Graf Turana T 2n n mozhna otrimati vidalennyam doskonalogo paruvannya z povnogo grafa K2n Yak pokazav Roberts Roberts 1969 ramkovist cogo grafa dorivnyuye rivno n Cej graf inodi nazivayut grafom Robertsa Cej graf ye takozh 1 en n vimirnogo kografa Napriklad graf T 6 3 K2 2 2 ce graf pravilnogo oktaedra Yaksho n par prihodyat na vechirku i kozhna lyudina tisne ruku vsim okrim svogo partnera to cej graf opisuye mnozhinu rukostiskan Z ciyeyi prichini jogo takozh nazivayut grafom koktejl vechirki Graf Turana T n 2 ce povnij dvochastkovij graf i yaksho n parne ce graf Mura Yaksho r ce dilnik n graf Turana ye simetrichnim i silno regulyarnim hocha deyaki avtori vvazhayut sho grafi Turana ye trivialnim vipadkom silnoyi regulyarnosti i tomu viklyuchayut yih z viznachennya strogo regulyarnih grafiv Graf Turana T n n 3 displaystyle T n lceil n 3 rceil maye 3a2b najbilshih klik de 3a 2b n ta b 2 Kozhna najbilsha klika utvoryuyetsya viborom odniyeyi vershini z kozhnoyi chastki Ce chislo najbilshih klik ye najbilshim mozhlivim sered usih grafiv z n vershinami nezalezhno vid chisla reber u grafi Mun i Mozer 1965 Ci grafi inodi nazivayut grafami Muna Mozera Inshi vlastivostiBud yakij graf Turana ye kografom Takim chinom jogo mozhna utvoriti z okremih vershin poslidovnistyu operacij diz yunktnogo ob yednannya i dopovnennya Zokrema taku poslidovnist mozhna pochati utvorennyam usih nezalezhnih mnozhin grafa Turana yak diz yunktnogo ob yednannya izolovanih vershin Todi ves graf ye dopovnennyam diz yunktnogo ob yednannya dopovnen cih nezalezhnih mnozhin Chao i Novackij Chao Novacky 1982 pokazali sho grafi Turana hromatichno yedini niyaki inshi grafi ne mayut takih samih hromatichnih mnogochleniv Nikiforov Nikiforov 2005 vikoristovuvav grafi Turana dlya znahodzhennya nizhnoyi mezhi sumi k h vlasnih znachen grafa i jogo dopovnennya Fols Povel i Snoyink Falls Powell Snoeyink rozrobili efektivnij algoritm dlya poshuku klasteriv ortologichnih grup geniv u genomi podannyam danih yak grafa i poshukom velikih pidgrafiv Turana Grafi Turana mayut takozh nizku cikavih vlastivostej pov yazanih z en Por i Vud Por Wood 2005 dayut nizhnyu mezhu W rn 3 4 bud yakogo trivimirnogo vkladennya grafa Turana Vitsengauzen Witsenhausen 1974 visloviv gipotezu sho najbilsha suma kvadrativ vidstanej mizh n tochkami vseredini kuli Rd odinichnogo diametra dosyagayetsya na konfiguraciyi utvorenij vkladennyam grafa Turana u vershini pravilnogo simpleksa Graf G z n vershinami ye pidgrafom grafa Turana T n r todi j lishe todi koli G dopuskaye rivnomirne rozfarbuvannya v r koloriv Rozkladannya grafa Turana na nezalezhni mnozhini vidpovidaye rozkladannyu G na klasi koloriv Zokrema graf Turana ye yedinim maksimalnim grafom z n vershinami z rivnomirnim rozfarbuvannyam u r koloriv LiteraturaC Y Chao G A Novacky On maximally saturated graphs Discrete Mathematics 1982 T 41 vip 2 21 chervnya S 139 143 DOI 10 1016 0012 365X 82 90200 X Craig Falls Bradford Powell Jack Snoeyink Computing high stringency COGs using Turan type graphs z dzherela 17 kvitnya 2021 Procitovano 4 sichnya 2021 Peter Keevash Benny Sudakov Local density in graphs with forbidden subgraphs Combinatorics Probability and Computing 2003 T 12 vip 2 21 chervnya S 139 153 DOI 10 1017 S0963548302005539 J W Moon L Moser On cliques in graphs Israel Journal of Mathematics 1965 T 3 21 chervnya S 23 28 DOI 10 1007 BF02760024 Vladimir Nikiforov Eigenvalue problems of Nordhaus Gaddum type 2005 21 chervnya arXiv math CO 0506260 Attila Por David R Wood Proc Int Symp Graph Drawing GD 2004 Lecture Notes in Computer Science no 3383 Springer Verlag 2005 S 395 402 DOI 10 1007 b105810 F S Roberts Recent Progress in Combinatorics Academic Press 1969 S 301 310 P Turan On an extremal problem in graph theory Matematiko Fizicki Lapok 1941 T 48 21 chervnya S 436 452 H S Witsenhausen On the maximum of the sum of squared distances under a diameter constraint American Mathematical Monthly The American Mathematical Monthly Vol 81 No 10 1974 T 81 vip 10 21 chervnya S 1100 1101 DOI 10 2307 2319046 PosilannyaWeisstein Eric W Cocktail Party Graph angl na sajti Wolfram MathWorld Weisstein Eric W Graf oktaedra angl na sajti Wolfram MathWorld Weisstein Eric W Graf Turana angl na sajti Wolfram MathWorld