Підтримка
www.wikidata.uk-ua.nina.az
Algebrayichni chisla takozh algebrichni chisla pidmnozhina kompleksnih chisel kozhne z yakih ye korenem hocha b odnogo mnogochlena pevnogo stepenya z racionalnimi koeficiyentami Tobto chislo a C displaystyle alpha in mathbb C ye algebrayichnim yaksho isnuye mnogochlen f x a n x n a n 1 x n 1 a 1 x a 0 displaystyle f x a n x n a n 1 x n 1 ldots a 1 x a 0 de k 1 n a k Q displaystyle forall k in 1 cdots n a k in mathbb Q i f a 0 displaystyle f alpha 0 U comu viznachenni mozhna bulo vimagati shob koeficiyenti mnogochlena buli cilimi chislami Chisla sho ne ye algebrayichnimi nazivayutsya transcendentnimi Yaksho chislo ye korenem mnogochlena f x Z x displaystyle f x in mathbb Z x zi starshim koeficiyentom rivnim odinici to ce chislo nazivayetsya cilim algebrayichnim chislom PrikladiVsi racionalni chisla ye algebrayichnimi chislo a b displaystyle left frac a b right ye napriklad korenem rivnyannya b x a 0 displaystyle bx a 0 Uyavna odinicya chislo i 1 displaystyle i sqrt 1 ye algebrayichnim yak korin rivnyannya x 2 1 0 displaystyle x 2 1 0 Chisla e p ep ye transcendentnimi Status chisla pe nevidomij Yaksho a 0 1 b Q displaystyle alpha neq 0 1 beta notin mathbb Q algebrayichni chisla todi a b displaystyle alpha beta transcendentne chislo Chisla cos 1 displaystyle cos 1 i sin 1 displaystyle sin 1 ye algebrayichnimi kuti v gradusah Cej fakt viplivaye z trigonometrichnoyi rivnosti cos n 1 8 2 cos n 8 cos 8 cos n 1 8 displaystyle cos n 1 theta 2 cos n theta cos theta cos n 1 theta Tomu yaksho viznachiti poslidovnist mnogochleniv g n 1 x 2 g n x x g n 1 x displaystyle g n 1 x 2g n x x g n 1 x to cos m 8 g m cos 8 m N displaystyle cos m theta g m cos theta m in mathbb N Zvidsi oderzhuyemo 0 cos 90 1 g 90 cos 1 displaystyle 0 cos 90 cdot 1 g 90 cos 1 tobto cos 1 displaystyle cos 1 ye korenem mnogochlena g 90 x displaystyle g 90 x sho j dovodit tverdzhennya Dlya sin 1 displaystyle sin 1 dostatno zaznachiti sho vsi stepeni x displaystyle x v g 90 x displaystyle g 90 x ye parnimi i sho cos 1 1 sin 2 1 displaystyle cos 1 sqrt 1 sin 2 1 Minimalnij mnogochlenYaksho a displaystyle alpha algebrayichne chislo to sered vsih mnogochleniv z racionalnimi koeficiyentami dlya yakih a displaystyle alpha ye korenem isnuye yedinij mnogochlen najmenshogo stepenya iz starshim koeficiyentom rivnim 1 displaystyle 1 Takij mnogochlen ye nezvidnim vin nazivayetsya minimalnim mnogochlenom algebrayichnogo chisla a displaystyle alpha Stepin minimalnogo mnogochlena a displaystyle alpha nazivayetsya stepenem algebrayichnogo chisla a displaystyle alpha Inshi koreni minimalnogo mnogochlena a displaystyle alpha nazivayutsya spryazhenimi do a displaystyle alpha Visotoyu algebrayichnogo chisla a displaystyle alpha nazivayetsya najbilsha z absolyutnih velichin koeficiyentiv v nezvidnomu i primitivnomu mnogochleni z cilimi koeficiyentami dlya yakogo a displaystyle alpha ye korenem Minimalnij mnogolen chisla a displaystyle alpha maye koeficiyenti cili chisla todi i tilki todi koli a displaystyle alpha cile algebrayichne chislo Prikladi Racionalni chisla i lishe voni ye algebrayichnimi chislami 1 go stepenya Uyavna odinicya i displaystyle i tak samo yak 2 displaystyle sqrt 2 ye algebrayichnimi chislami 2 go stepenya Spryazhenimi do cih chisel ye vidpovidno i displaystyle i ta 2 displaystyle sqrt 2 Pri bud yakomu naturalnomu n displaystyle n 2 n displaystyle sqrt n 2 ye algebrayichnim chislom n displaystyle n go stepenya Pole algebrayichnih chiselOdniyeyu z najvazhlivishih vlastivostej algebrayichnih chisel ye toj fakt sho voni utvoryuyut pole tobto yaksho a displaystyle alpha i b displaystyle beta algebrayichni chisla to yih oberneni elementi a displaystyle alpha i a 1 displaystyle alpha 1 a takozh suma a b displaystyle alpha beta i dobutok a b displaystyle alpha beta takozh ye algebrayichnimi chislami Dovedennya Spershu dovedemo algebrayichnist a displaystyle alpha Yaksho f x displaystyle f x mnogochlen z cilimi koeficiyentami dlya yakogo a displaystyle alpha ye korenem to a displaystyle alpha bude korenem mnogochlena f x displaystyle f x Tobto a displaystyle alpha algebrayichne chislo Yaksho a displaystyle alpha korin mnogochlena f x k 0 n a k x k Z x displaystyle f x sum k 0 n a k x k in mathbb Z x to a 1 displaystyle alpha 1 ye korenem mnogochlena g x k 0 n a n k x k Z x displaystyle g x sum k 0 n a n k x k in mathbb Z x otzhe a 1 displaystyle alpha 1 tezh ye algebrayichnim chislom Dovedemo teper algebrayichnist a b displaystyle alpha beta Pripustimo a ye korenem mnogochlena f x Z x displaystyle f x in mathbb Z x i b displaystyle beta ye korenem mnogochlena g x Z x displaystyle g x in mathbb Z x Nehaj a 1 a a 2 a n displaystyle alpha 1 alpha alpha 2 dots alpha n vsi koreni f x displaystyle f x vrahovuyuchi yih kratnist tak sho stepin f x displaystyle f x rivnij n displaystyle n i nehaj b 1 b b 2 b m displaystyle beta 1 beta beta 2 dots beta m vsi koreni g x displaystyle g x Rozglyanemo mnogochlen F x i 1 n j 1 m x a i b j displaystyle F x prod i 1 n prod j 1 m x alpha i beta j Mnozhina R Z b 1 b m displaystyle R mathbb Z beta 1 ldots beta m ye komutativnim kilcem Z teoremi Viyeta viplivaye sho koeficiyenti F x displaystyle F x ye simetrichnimi mnogochlenami vid chisel a 1 a a 2 a n displaystyle alpha 1 alpha alpha 2 dots alpha n Tomu yaksho s 1 s 2 s n displaystyle sigma 1 sigma 2 dots sigma n elementarni simetrichni mnogochleni vid a 1 a a 2 a n displaystyle alpha 1 alpha alpha 2 dots alpha n i A displaystyle A deyakij koeficiyent pri x k displaystyle x k mnogochlena F x displaystyle F x todi z fundamentalnoyi teoremi pro simetrichni mnogochleni viplivaye sho A B s 1 s 2 s n b 1 b 2 b n displaystyle A B sigma 1 sigma 2 dots sigma n beta 1 beta 2 dots beta n dlya deyakogo mnogochlena B displaystyle B z cilimi koeficiyentami Prote koeficiyenti F x displaystyle F x takozh ye simetrichnimi mnogochlenami vid chisel b 1 b 2 b m displaystyle beta 1 beta 2 dots beta m Nehaj R Z s 1 s n displaystyle R mathbb Z sigma 1 ldots sigma n i s 1 s 2 s n displaystyle sigma 1 sigma 2 dots sigma n elementarni simetrichni mnogochleni vid b 1 b b 2 b m displaystyle beta 1 beta beta 2 dots beta m tomu z fundamentalnoyi teoremi pro simetrichni mnogochleni A B s 1 s 2 s n s 1 s 2 s m displaystyle A B sigma 1 sigma 2 dots sigma n sigma 1 sigma 2 dots sigma m dlya deyakogo mnogochlena B displaystyle B z cilimi koeficiyentami Z teoremi Viyeta viplivaye sho vsi s 1 s 2 s n s 1 s 2 s m displaystyle sigma 1 sigma 2 dots sigma n sigma 1 sigma 2 dots sigma m ye racionalnimi i tomu racionalnim ye takozh koeficiyent A displaystyle A Tomu F x Q x displaystyle F x in mathbb Q x i oskilki a b displaystyle alpha beta ye korenem F x displaystyle F x ce chislo ye algebrayichnim Algebrayichnist chisla a b displaystyle alpha beta dovoditsya analogichno do vipadku a b displaystyle alpha beta rozglyadayuchi mnogochlen F x i 1 n j 1 m x a i b j displaystyle F x prod i 1 n prod j 1 m x alpha i beta j VlastivostiMnozhina algebrayichnih chisel ye zlichennoyu Teorema Kantora Mnozhina algebrayichnih chisel ye shilnoyu v kompleksnij ploshini Korin mnogochlena koeficiyentami yakogo ye algebrayichni chisla tezh ye algebrayichnim chislom tobto pole algebrayichnih chisel ye algebrayichno zamknutim Dlya dovilnogo algebrayichnogo chisla a displaystyle alpha isnuye take naturalne N displaystyle N sho N a displaystyle N alpha cile algebrayichne chislo Algebrayichne chislo a displaystyle alpha stepenya n displaystyle n maye n displaystyle n riznih spryazhenih chisel vklyuchayuchi same chislo a displaystyle alpha a displaystyle alpha i b displaystyle beta spryazheni todi i tilki todi koli isnuye avtomorfizm polya A displaystyle mathbb A sho perevodit a displaystyle alpha u b displaystyle beta V pevnomu rozuminni algebrayichni chisla sho ne ye racionalnimi ne mozhut buti dostatno dobre nablizheni racionalnimi chislami Dva rezultati sho proyasnyuyut sut cogo tverdzhennya Teorema Liuvilya yaksho a Q displaystyle alpha in mathbb Q ye korenem mnogochlena f x Z x displaystyle f x in mathbb Z x stepin yakogo rivnij n displaystyle n todi isnuye chislo A displaystyle A zalezhne vid a displaystyle alpha sho a a b gt A b n displaystyle left alpha left frac a b right right gt left frac A b n right dlya dovilnogo racionalnogo chisla a b displaystyle left frac a b right dd Teorema Tue Zigelya Rota yaksho a Q displaystyle alpha in mathbb Q ye algebrayichnim chislom todi dlya dovilnogo e displaystyle varepsilon isnuye lishe skinchenna kilkist par cilih chisel a b displaystyle a b de b gt 0 displaystyle b gt 0 dlya yakih a a b lt 1 b 2 e displaystyle left alpha left frac a b right right lt left frac 1 b 2 varepsilon right dd Div takozhCile algebrayichne chislo Algebrayichne rozshirennyaPosilannyaNesterenko Yu V Lekcii ob algebraicheskih chislah nedostupne posilannya z lyutogo 2019 Konspekt kursu lekcij M FilasetaLiteraturaAjerlend K Rouzen M Klassicheskoe vvedenie v sovremennuyu teoriyu chisel Moskva Mir 1987 416 s ros Algebraicheskaya teoriya chisel Pod red Kasselsa Dzh Freliha A M 1969 Borevich 3 I I G Shafarevich Teoriya chisel M 1985 Vejl G Algebraicheskaya teoriya chisel M 1947 Gekke E Lekcii po teorii algebraicheskih chisel M L 1940 Drinfeld G I Transcendentnost chisel pi i e Harkiv 1952 Leng S Algebraicheskie chisla per s angl M 1966 Ireland Kenneth Rosen Michael 1990 A Classical Introduction to Modern Number Theory Graduate Texts in Mathematics 84 Second ed Berlin New York Springer Verlag ISBN 0 387 97329 X
Топ