Уран-233 (233U або U-233) — це ізотоп урану, що розщеплюється, який утворюється з торію-232 у рамках торієвого паливного циклу. Уран-233 досліджувався для використання в ядерній зброї та як паливо для реакторів. Він успішно використовувався в експериментальних ядерних реакторах і був запропонований для ширшого використання як ядерне паливо. Його період напіврозпаду становить 160 000 років.
Уран-233 отримують нейтронним опроміненням торію-232. Коли торій-232 поглинає нейтрон, він стає торієм-233, який має період напіврозпаду лише 22 хвилини. Торій-233 розпадається на шляхом бета-розпаду. Протактиній-233 має період напіврозпаду 27 днів і розпадається шляхом бета-розпаду на уран-233; деякі запропоновані конструкції реакторів на розплавах солей намагаються фізично ізолювати протактиній від подальшого захоплення нейтронів до бета-розпаду, щоб зберегти нейтронну ефективність (якщо пропущене вікно 233U, наступною ціллю, що розщеплюється, є 235U, тобто загалом 4 нейтрони необхідні для поділу).
233U зазвичай ділиться при поглинанні нейтронів, але іноді зберігає нейтрони, перетворюючись на уран-234. Відношення числа подій захоплення до поділу урану-233 менше, ніж у двох інших основних видів палива, що розщеплюються, урану-235 і плутонію-239.[]
Матеріал, що розщеплюється
У 1946 році вперше повідомили про уран-233, отриманий з торію, як «третє доступне джерело ядерної енергії та атомних бомб» (на додаток до урану-235 і плутонію-239), після доповіді Організації Об'єднаних Націй і виступу Гленна Сіборга.
Сполучені Штати виробили протягом холодної війни приблизно 2 метричні тонни урану-233 різного рівня хімічної та ізотопної чистоти. Вони були вироблені у Генфордському комплексі і в реакторах, призначених для виробництва плутонію-239.
Ядерне паливо
Уран-233 використовувався як паливо в кількох різних типах реакторів і пропонується як паливо для кількох нових конструкцій (див. торієвий паливний цикл), усі з яких утворюють його з торію. Уран-233 можна виробляти як у реакторах на швидких нейтронах, так і в реакторах на теплових нейтронах, на відміну від паливних циклів на основі урану-238, які вимагають чудової нейтронної ефективності від реактора на швидких нейтронах для розмноження плутонію, тобто щоб виробляти більше матеріалу, що розщеплюється, ніж споживається.
Довгострокова стратегія ядерно-енергетичної програми Індії, яка має значні запаси торію, полягає в переході до розмноження урану-233 з торієвої сировини.
Енергія, що виділяється
Поділ одного атома урану-233 генерує 197,9 МеВ = 3,171·10−11 Дж (тобто 19.09 ТДж/моль = 81,95 ТДж/кг = 22764 МВт·год/кг, що в 1,8 млн разів більше, ніж така ж маса дизельного палива).
Джерело | Середня виділена енергія, (МеВ) |
---|---|
Енергя, що виділяється негайно | |
Кінетична енергія осколків поділу | 168.2 |
Кінетична енергія швидких нейтронів | 4.8 |
Енергія, що переноситься швидкими γ-променями | 7.7 |
Енергія продуктів розпаду | |
Енергія β − частинок | 5.2 |
Енергія антинейтрино | 6.9 |
Енергія запізнілих γ-променів | 5,0 |
Сума (без урахування антинейтрино) | 191,0 |
Енергія, що виділяється, коли вловлюються ті швидкі нейтрони, які не (відтворюють) поділу | 9.1 |
Енергія перетворюється на тепло в працюючому тепловому ядерному реакторі | 200.1 |
Матеріал для зброї
Як потенційний збройовий матеріал, чистий уран-233 більше схожий на плутоній-239, ніж уран-235 з точки зору походження (розмножений або природний), періоду напіврозпаду та критичної маси (обидва 4–5 кг у відбиваючій берилієвій сфері). На відміну від розмноженого в реакторі плутонію, він має дуже низьку швидкість спонтанного поділу, що в поєднанні з його низькою критичною масою зробило його привабливим для компактної зброї гарматного типу, такої як артилерійські снаряди малого діаметра.
У розсекреченій записці ядерної програми США від 1966 року стверджувалося, що уран-233 виявився дуже задовільним як матеріал для зброї, хоча лише в рідкісних випадках він перевершує плутоній. Стверджувалося, що якби існуюча зброя базувалася на урані-233 замість плутонію-239, Лівермор не був би зацікавлений у переході на плутоній.
Присутність урану-232 може ускладнити виробництво та використання урану-233, хоча Ліверморський меморандум вказує на ймовірність того, що це ускладнення можна вирішити.
Хоча, таким чином, можна використовувати уран-233 як матеріал, що розщеплюється, для ядерної зброї, якщо не враховувати припущення, то публічно доступна інформація про те, що цей ізотоп фактично використовувався як зброя, обмежена:
- Сполучені Штати підірвали експериментальний пристрій під час випробувань «MET» композитне ядро з плутонію/ 233U; його конструкція базувалася на плутонієвому ядрі з 235U з TX-7E, прототипу конструкції ядерної бомби Mark 7, яка використовувалася під час випробувань «Easy» операції Бастер-Джангл 1951 року. Незважаючи на те, що сталася не повна відмова, фактична потужність MET у 22 кілотонни була значно нижчою за прогнозовані 33 кт, тому зібрана інформація мала обмежену цінність. у 1955 році, у якому використовувалась
- Того ж року Радянський Союз підірвав свою першу водневу бомбу , яка містила розщеплюваний сердечник з 235U та 233U.
- У 1998 році в рамках випробувань малої потужності (0,2 кт) на основі 233U під назвою Shakti V. Індія підірвала експериментальний пристрій
Реактор B та інші на заводі в Генфорді, оптимізовані для виробництва збройового матеріалу, використовувалися для виробництва 233U.
Вважається, що загалом Сполучені Штати виробили дві тонни 233U різного рівня чистоти, деякі партії з вмістом 232U до 6 ppm.
Домішка 232U
Виробництво 233U (через опромінення торію-232) незмінно утворює невеликі кількості урану-232 як домішки через паразитні (n, 2n) реакції у самому урані-233, або у
, або у торію-232:- 232Th (n,γ) → 233Th (β−) → 233Pa (β−) → 233U (n,2n) → 232U
- 232Th (n,γ) → 233Th (β−) → 233Pa (n,2n) → 232Pa (β−) → 232U
- 232Th (n,2n) → 231Th (β−) → 231Pa (n,γ) → 232Па (β−) → 232U
Інший канал включає реакцію захоплення нейтронів на невеликих кількостях торію-230, який є крихітною часткою природного торію, присутнього внаслідок розпаду урану-238:
- 230Th (n,γ) → 231Th (β−) → 231Pa (n,γ) → 232Pa (β−) → 232U
Ланцюг розпаду 232U швидко дає потужні джерела гамма-випромінювання. є найпотужнішим з них, 2,6 МеВ:
- 232U (α, 68,9 y)
- 228Th (α, 1,9 y)
- 224Ra (α, 5,44 МеВ, 3,6 дня, з γ 0,24 МеВ)
- 220Rn (α, 6,29 МеВ, 56 с, з γ 0,54 МеВ)
- 216Po (α, 0,15 с)
- 212Pb (β−, 10,64 год)
- 212Bi (α, 61 хв, 0,78 МеВ)
- 208Tl (β−, 1,8 МеВ, 3 хв, з γ 2,6 МеВ)
- 208Pb (стабільний)
Це робить ручну роботу в боксі з рукавичками лише з легким екрануванням (як зазвичай робиться з плутонієм) надто небезпечною (за винятком, можливо, короткого періоду відразу після хімічного відділення урану від продуктів його розпаду), і натомість вимагає складних дистанційних маніпуляцій для виготовлення палива.
Небезпека є значною навіть при 5 частках домішок на мільйон. Вибухова ядерна зброя потребує рівня 232U нижче 50 частин на мільйон (якщо вище, то 233U вважається «низькозбагаченим»; для порівняння «стандартний збройовий плутоній вимагає вмісту 240Pu не більше 6,5 %», що становить 65 000 ppm, а аналогічний 238Pu вироблявся на рівнях 0,5 % (5000 ppm) або менше). Для зброї поділу гарматного типу додатково потрібні низькі рівні (1 ppm) легких домішок, щоб зберегти низьке утворення нейтронів.
Виробництво «чистого» 233U з низьким вмістом 232U вимагає кількох факторів: 1) отримання відносно чистого джерела 232Th з низьким вмістом 230Th (який також перетворюється на 232U), 2) сповільнення нейтронів, щоб мати енергію не вище 6 МеВ (нейтрони надто високої енергії викликають реакцію 232Th (n,2n) → 231Th) і 3) видалення зразка торію з потоку нейтронів до того, як концентрація 233U досягне надто високого рівня, щоб уникнути розщеплення самого 233U (який виробляв би енергійні нейтрони).
[en] (MSRE) використовував 233U, розмножений у реакторах на легкій воді, таких як Індіан-Поінт, з вмістом 232U вище 220 ppm.
Подальша інформація
Торію, з якого виділяють 233U, міститься в земній корі приблизно в три-чотири рази більше, ніж урану. Сам ланцюг розпаду 233U є частиною серії нептунію, ланцюга розпаду його прабатька .
Застосування урану-233 включає виробництво медичних ізотопів торієвий паливний цикл.
і , які є одними з його дочірніх ізотопів, ядерні реактори малої маси для космічних подорожей, використання як ізотопного індикатора, дослідження ядерної зброї та дослідження реакторного палива, включаючиРадіоізотоп бісмут-213 є продуктом розпаду урану-233; він є перспективним для лікування деяких видів раку, включаючи гострий мієлоїдний лейкоз і рак підшлункової залози, нирок та інших органів.
Див. також
Примітки
- C. W. Forsburg; L. C. Lewis (24 вересня 1999). Uses For Uranium-233: What Should Be Kept for Future Needs? (PDF). Ornl-6952. Oak Ridge National Laboratory.
- Atomic Energy 'Secret' Put into Language That Public Can Understand. [en]. United Press. 29 вересня 1946. Процитовано 18 жовтня 2011.
- Third Nuclear Source Bared. [en]. United Press. 21 жовтня 1946. Процитовано 18 жовтня 2011.
- Orth, D. A. (1 червня 1978). Savannah River Plant Thorium Processing Experience. Nuclear Technology. 43: 63—74. doi:10.13182/NT79-A16175.
- Nuclear fission 4.7.1. kayelaby.npl.co.uk. Процитовано 21 квітня 2018.
- Nuclear proliferation factbook. Committee on Governmental Affairs. Subcommittee on Energy, N. Proliferation., United States. Congress. House. Committee on Foreign Affairs. Subcommittee on International Economic Policy and Trade., United States. Congress. House. Committee on Foreign Affairs. Subcommittee on Arms Control, I. Security. 1985. с. 295. Процитовано 29 листопада 2019.
- Hansen, Chuck (2007). Swords of Armageddon: US Nuclear Weapons Development since 1945, Version 2. Chuckelea Publications. с. I-262, I-270.
- Woods, W. K. (10 лютого 1966). LRL interest in U-233. United States. DUN-677. doi:10.2172/79078. 79078.
- Langford, R. Everett (2004). Introduction to Weapons of Mass Destruction: Radiological, Chemical, and Biological. Hoboken, New Jersey: . с. 85. ISBN .
- Agrawal, Jai Prakash (2010). High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH. с. 56—57. ISBN . Процитовано 19 березня 2012.
- Operation Teapot. Nuclear Weapon Archive. 15 жовтня 1997. Процитовано 9 грудня 2008.
- Operation Buster-Jangle. Nuclear Weapon Archive. 15 жовтня 1997. Процитовано 18 березня 2012.
- Stephen F. Ashley. Thorium and its role in the nuclear fuel cycle. Процитовано 16 квітня 2014.
- Rajat Pandit (28 серпня 2009). . The Times of India. Архів оригіналу за 21 травня 2013. Процитовано 20 липня 2012.
- India's Nuclear Weapons Program – Operation Shakti: 1998. 30 березня 2001. Процитовано 21 липня 2012.
- (PDF). hanfordchallenge.org. Архів оригіналу (PDF) за 12 травня 2013. Процитовано 21 квітня 2018.
- (PDF). hanfordchallenge.org. Архів оригіналу (PDF) за 15 жовтня 2012. Процитовано 21 квітня 2018.
- Questions and Answers on Uranium-233 at Hanford (PDF). radioactivist.org. Процитовано 21 квітня 2018.
- Hanford Radioactivity in Salmon Spawning Grounds (PDF). clarku.edu. Процитовано 21 квітня 2018.
- Robert Alvarez. Managing the Uranium-233 Stockpile of the United States (PDF). Science and Global Security.
- Nuclear Materials FAQ
- US patent 4393510
- SA LFTR Energy (Pty.) Ltd. The Superior Design Advantages over All Other Nuclear Reactor Designs of the Liquid Fluoride Thorium Reactor (LFTR), with an Emphasis on Its Anti-Proliferation Features (PDF). The South Africa Independent LFTR Power Producer Project. с. 10.
- . WebElements.com. Архів оригіналу за 23 травня 2008. Процитовано 12 квітня 2014.
- It's Elemental — The Periodic Table of Elements. Jefferson Lab. оригіналу за 29 квітня 2007. Процитовано 14 квітня 2007.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Uran 233 233U abo U 233 ce izotop uranu sho rozsheplyuyetsya yakij utvoryuyetsya z toriyu 232 u ramkah toriyevogo palivnogo ciklu Uran 233 doslidzhuvavsya dlya vikoristannya v yadernij zbroyi ta yak palivo dlya reaktoriv Vin uspishno vikoristovuvavsya v eksperimentalnih yadernih reaktorah i buv zaproponovanij dlya shirshogo vikoristannya yak yaderne palivo Jogo period napivrozpadu stanovit 160 000 rokiv Uran 233 otrimuyut nejtronnim oprominennyam toriyu 232 Koli torij 232 poglinaye nejtron vin staye toriyem 233 yakij maye period napivrozpadu lishe 22 hvilini Torij 233 rozpadayetsya na inshi movi shlyahom beta rozpadu Protaktinij 233 maye period napivrozpadu 27 dniv i rozpadayetsya shlyahom beta rozpadu na uran 233 deyaki zaproponovani konstrukciyi reaktoriv na rozplavah solej namagayutsya fizichno izolyuvati protaktinij vid podalshogo zahoplennya nejtroniv do beta rozpadu shob zberegti nejtronnu efektivnist yaksho propushene vikno 233U nastupnoyu cillyu sho rozsheplyuyetsya ye 235U tobto zagalom 4 nejtroni neobhidni dlya podilu 233U zazvichaj dilitsya pri poglinanni nejtroniv ale inodi zberigaye nejtroni peretvoryuyuchis na uran 234 Vidnoshennya chisla podij zahoplennya do podilu uranu 233 menshe nizh u dvoh inshih osnovnih vidiv paliva sho rozsheplyuyutsya uranu 235 i plutoniyu 239 dzherelo Material sho rozsheplyuyetsya inshi movi inshi movi Nimeckij THTR 300 U 1946 roci vpershe povidomili pro uran 233 otrimanij z toriyu yak tretye dostupne dzherelo yadernoyi energiyi ta atomnih bomb na dodatok do uranu 235 i plutoniyu 239 pislya dopovidi Organizaciyi Ob yednanih Nacij i vistupu Glenna Siborga Spolucheni Shtati virobili protyagom holodnoyi vijni priblizno 2 metrichni tonni uranu 233 riznogo rivnya himichnoyi ta izotopnoyi chistoti Voni buli virobleni u Genfordskomu kompleksi i inshi movi v reaktorah priznachenih dlya virobnictva plutoniyu 239 Yaderne palivoUran 233 vikoristovuvavsya yak palivo v kilkoh riznih tipah reaktoriv i proponuyetsya yak palivo dlya kilkoh novih konstrukcij div toriyevij palivnij cikl usi z yakih utvoryuyut jogo z toriyu Uran 233 mozhna viroblyati yak u reaktorah na shvidkih nejtronah tak i v reaktorah na teplovih nejtronah na vidminu vid palivnih cikliv na osnovi uranu 238 yaki vimagayut chudovoyi nejtronnoyi efektivnosti vid reaktora na shvidkih nejtronah dlya rozmnozhennya plutoniyu tobto shob viroblyati bilshe materialu sho rozsheplyuyetsya nizh spozhivayetsya Dovgostrokova strategiya yaderno energetichnoyi programi Indiyi yaka maye znachni zapasi toriyu polyagaye v perehodi do rozmnozhennya uranu 233 z toriyevoyi sirovini Energiya sho vidilyayetsya Podil odnogo atoma uranu 233 generuye 197 9 MeV 3 171 10 11 Dzh tobto 19 09 TDzh mol 81 95 TDzh kg 22764 MVt god kg sho v 1 8 mln raziv bilshe nizh taka zh masa dizelnogo paliva Dzherelo Serednya vidilena energiya MeV Energya sho vidilyayetsya negajno Kinetichna energiya oskolkiv podilu 168 2 Kinetichna energiya shvidkih nejtroniv 00 4 8 Energiya sho perenositsya shvidkimi g promenyami 00 7 7 Energiya produktiv rozpadu Energiya b chastinok 00 5 2 Energiya antinejtrino 00 6 9 Energiya zapiznilih g promeniv 00 5 0 Suma bez urahuvannya antinejtrino 191 0 Energiya sho vidilyayetsya koli vlovlyuyutsya ti shvidki nejtroni yaki ne vidtvoryuyut podilu 00 9 1 Energiya peretvoryuyetsya na teplo v pracyuyuchomu teplovomu yadernomu reaktori 200 1Material dlya zbroyiPershij pidriv yadernoyi bombi do skladu yakoyi vhodiv U 233 stavsya 15 kvitnya 1955 roku Yak potencijnij zbrojovij material chistij uran 233 bilshe shozhij na plutonij 239 nizh uran 235 z tochki zoru pohodzhennya rozmnozhenij abo prirodnij periodu napivrozpadu ta kritichnoyi masi obidva 4 5 kg u vidbivayuchij beriliyevij sferi Na vidminu vid rozmnozhenogo v reaktori plutoniyu vin maye duzhe nizku shvidkist spontannogo podilu sho v poyednanni z jogo nizkoyu kritichnoyu masoyu zrobilo jogo privablivim dlya kompaktnoyi zbroyi garmatnogo tipu takoyi yak artilerijski snaryadi malogo diametra U rozsekrechenij zapisci yadernoyi programi SShA vid 1966 roku stverdzhuvalosya sho uran 233 viyavivsya duzhe zadovilnim yak material dlya zbroyi hocha lishe v ridkisnih vipadkah vin perevershuye plutonij Stverdzhuvalosya sho yakbi isnuyucha zbroya bazuvalasya na urani 233 zamist plutoniyu 239 Livermor ne buv bi zacikavlenij u perehodi na plutonij Prisutnist uranu 232 mozhe uskladniti virobnictvo ta vikoristannya uranu 233 hocha Livermorskij memorandum vkazuye na jmovirnist togo sho ce uskladnennya mozhna virishiti Hocha takim chinom mozhna vikoristovuvati uran 233 yak material sho rozsheplyuyetsya dlya yadernoyi zbroyi yaksho ne vrahovuvati pripushennya to publichno dostupna informaciya pro te sho cej izotop faktichno vikoristovuvavsya yak zbroya obmezhena Spolucheni Shtati pidirvali eksperimentalnij pristrij pid chas viprobuvan MET inshi movi u 1955 roci u yakomu vikoristovuvalas kompozitne yadro z plutoniyu 233U jogo konstrukciya bazuvalasya na plutoniyevomu yadri z 235U z TX 7E prototipu konstrukciyi yadernoyi bombi Mark 7 yaka vikoristovuvalasya pid chas viprobuvan Easy operaciyi Baster Dzhangl 1951 roku Nezvazhayuchi na te sho stalasya ne povna vidmova faktichna potuzhnist MET u 22 kilotonni bula znachno nizhchoyu za prognozovani 33 kt tomu zibrana informaciya mala obmezhenu cinnist Togo zh roku Radyanskij Soyuz pidirvav svoyu pershu vodnevu bombu inshi movi yaka mistila rozsheplyuvanij serdechnik z 235U ta 233U U 1998 roci v ramkah viprobuvan inshi movi Indiya pidirvala eksperimentalnij pristrij maloyi potuzhnosti 0 2 kt na osnovi 233U pid nazvoyu Shakti V Reaktor B ta inshi na zavodi v Genfordi optimizovani dlya virobnictva zbrojovogo materialu vikoristovuvalisya dlya virobnictva 233U Vvazhayetsya sho zagalom Spolucheni Shtati virobili dvi tonni 233U riznogo rivnya chistoti deyaki partiyi z vmistom 232U do 6 ppm Domishka 232U Virobnictvo 233U cherez oprominennya toriyu 232 nezminno utvoryuye neveliki kilkosti uranu 232 yak domishki cherez parazitni n 2n reakciyi u samomu urani 233 abo u inshi movi abo u toriyu 232 232Th n g 233Th b 233Pa b 233U n 2n 232U 232Th n g 233Th b 233Pa n 2n 232Pa b 232U 232Th n 2n 231Th b 231Pa n g 232Pa b 232U Inshij kanal vklyuchaye reakciyu zahoplennya nejtroniv na nevelikih kilkostyah toriyu 230 yakij ye krihitnoyu chastkoyu prirodnogo toriyu prisutnogo vnaslidok rozpadu uranu 238 230Th n g 231Th b 231Pa n g 232Pa b 232U Lancyug rozpadu 232U shvidko daye potuzhni dzherela gamma viprominyuvannya inshi movi ye najpotuzhnishim z nih 2 6 MeV 232U a 68 9 y 228Th a 1 9 y 224Ra a 5 44 MeV 3 6 dnya z g 0 24 MeV 220Rn a 6 29 MeV 56 s z g 0 54 MeV 216Po a 0 15 s 212Pb b 10 64 god 212Bi a 61 hv 0 78 MeV 208Tl b 1 8 MeV 3 hv z g 2 6 MeV 208Pb stabilnij Ce robit ruchnu robotu v boksi z rukavichkami lishe z legkim ekranuvannyam yak zazvichaj robitsya z plutoniyem nadto nebezpechnoyu za vinyatkom mozhlivo korotkogo periodu vidrazu pislya himichnogo viddilennya uranu vid produktiv jogo rozpadu i natomist vimagaye skladnih distancijnih manipulyacij dlya vigotovlennya paliva Nebezpeka ye znachnoyu navit pri 5 chastkah domishok na miljon Vibuhova yaderna zbroya potrebuye rivnya 232U nizhche 50 chastin na miljon yaksho vishe to 233U vvazhayetsya nizkozbagachenim dlya porivnyannya standartnij zbrojovij plutonij vimagaye vmistu 240Pu ne bilshe 6 5 sho stanovit 65 000 ppm a analogichnij 238Pu viroblyavsya na rivnyah 0 5 5000 ppm abo menshe Dlya zbroyi podilu garmatnogo tipu dodatkovo potribni nizki rivni 1 ppm legkih domishok shob zberegti nizke utvorennya nejtroniv Virobnictvo chistogo 233U z nizkim vmistom 232U vimagaye kilkoh faktoriv 1 otrimannya vidnosno chistogo dzherela 232Th z nizkim vmistom 230Th yakij takozh peretvoryuyetsya na 232U 2 spovilnennya nejtroniv shob mati energiyu ne vishe 6 MeV nejtroni nadto visokoyi energiyi viklikayut reakciyu 232Th n 2n 231Th i 3 vidalennya zrazka toriyu z potoku nejtroniv do togo yak koncentraciya 233U dosyagne nadto visokogo rivnya shob uniknuti rozsheplennya samogo 233U yakij viroblyav bi energijni nejtroni en MSRE vikoristovuvav 233U rozmnozhenij u reaktorah na legkij vodi takih yak Indian Point z vmistom 232U vishe 220 ppm Podalsha informaciyaToriyu z yakogo vidilyayut 233U mistitsya v zemnij kori priblizno v tri chotiri razi bilshe nizh uranu Sam lancyug rozpadu 233U ye chastinoyu seriyi neptuniyu lancyuga rozpadu jogo prabatka inshi movi Zastosuvannya uranu 233 vklyuchaye virobnictvo medichnih izotopiv inshi movi i inshi movi yaki ye odnimi z jogo dochirnih izotopiv yaderni reaktori maloyi masi dlya kosmichnih podorozhej vikoristannya yak izotopnogo indikatora doslidzhennya yadernoyi zbroyi ta doslidzhennya reaktornogo paliva vklyuchayuchi toriyevij palivnij cikl Radioizotop bismut 213 ye produktom rozpadu uranu 233 vin ye perspektivnim dlya likuvannya deyakih vidiv raku vklyuchayuchi gostrij miyeloyidnij lejkoz i rak pidshlunkovoyi zalozi nirok ta inshih organiv Div takozhReaktor rozmnozhuvach inshi movi PrimitkiC W Forsburg L C Lewis 24 veresnya 1999 Uses For Uranium 233 What Should Be Kept for Future Needs PDF Ornl 6952 Oak Ridge National Laboratory Atomic Energy Secret Put into Language That Public Can Understand en United Press 29 veresnya 1946 Procitovano 18 zhovtnya 2011 Third Nuclear Source Bared en United Press 21 zhovtnya 1946 Procitovano 18 zhovtnya 2011 Orth D A 1 chervnya 1978 Savannah River Plant Thorium Processing Experience Nuclear Technology 43 63 74 doi 10 13182 NT79 A16175 Nuclear fission 4 7 1 kayelaby npl co uk Procitovano 21 kvitnya 2018 Nuclear proliferation factbook Committee on Governmental Affairs Subcommittee on Energy N Proliferation United States Congress House Committee on Foreign Affairs Subcommittee on International Economic Policy and Trade United States Congress House Committee on Foreign Affairs Subcommittee on Arms Control I Security 1985 s 295 Procitovano 29 listopada 2019 Hansen Chuck 2007 Swords of Armageddon US Nuclear Weapons Development since 1945 Version 2 Chuckelea Publications s I 262 I 270 Woods W K 10 lyutogo 1966 LRL interest in U 233 United States DUN 677 doi 10 2172 79078 79078 Langford R Everett 2004 Introduction to Weapons of Mass Destruction Radiological Chemical and Biological Hoboken New Jersey John Wiley amp Sons s 85 ISBN 0471465607 Agrawal Jai Prakash 2010 High Energy Materials Propellants Explosives and Pyrotechnics Wiley VCH s 56 57 ISBN 978 3 527 32610 5 Procitovano 19 bereznya 2012 Operation Teapot Nuclear Weapon Archive 15 zhovtnya 1997 Procitovano 9 grudnya 2008 Operation Buster Jangle Nuclear Weapon Archive 15 zhovtnya 1997 Procitovano 18 bereznya 2012 Stephen F Ashley Thorium and its role in the nuclear fuel cycle Procitovano 16 kvitnya 2014 Rajat Pandit 28 serpnya 2009 The Times of India Arhiv originalu za 21 travnya 2013 Procitovano 20 lipnya 2012 India s Nuclear Weapons Program Operation Shakti 1998 30 bereznya 2001 Procitovano 21 lipnya 2012 PDF hanfordchallenge org Arhiv originalu PDF za 12 travnya 2013 Procitovano 21 kvitnya 2018 PDF hanfordchallenge org Arhiv originalu PDF za 15 zhovtnya 2012 Procitovano 21 kvitnya 2018 Questions and Answers on Uranium 233 at Hanford PDF radioactivist org Procitovano 21 kvitnya 2018 Hanford Radioactivity in Salmon Spawning Grounds PDF clarku edu Procitovano 21 kvitnya 2018 Robert Alvarez Managing the Uranium 233 Stockpile of the United States PDF Science and Global Security Nuclear Materials FAQ US patent 4393510 SA LFTR Energy Pty Ltd The Superior Design Advantages over All Other Nuclear Reactor Designs of the Liquid Fluoride Thorium Reactor LFTR with an Emphasis on Its Anti Proliferation Features PDF The South Africa Independent LFTR Power Producer Project s 10 WebElements com Arhiv originalu za 23 travnya 2008 Procitovano 12 kvitnya 2014 It s Elemental The Periodic Table of Elements Jefferson Lab originalu za 29 kvitnya 2007 Procitovano 14 kvitnya 2007