Оберто́ва систе́ма ві́дліку — це особливий випадок неінерційної системи відліку, яка обертається щодо інерційної системи відліку. Повсякденним прикладом обертової системи відліку є поверхня Землі.
Сили інерції
Неінерційна система відліку проявляє фіктивні сили. Обертова система відліку характеризується трьома такими силами:
і, для нерівномірно обертових систем відліку,
- .
Зіставлення обертових систем до стаціонарних систем
Наступне це виведення формул для прискорення а також фіктивних сил в обертовій системі відліку. Спочатку розглядаємо зв'язок між координатами частинки в обертовій системі відліку та її координатами в інерційній (стаціонарній) системі відліку. Тоді, беручі похідну, отримуємо формули, які пов'язують швидкість частинки, що спостерігається у цих системах відліку, і прискорення стосовно двох систем відліку. Використовуючи прискорення, через порівняння другого закону Ньютона сформульованого в обох системах відліку визначаємо фіктивні сили.
Зв'язок між позиціями в обох системах відліку
Для отримання сил інерції корисно вміти конвертувати координати обертової системи відліку у координати інерційної системи відліку з тим самим початком координат і навпаки. Якщо обертання відбувається щодо осі з кутовою швидкістю і дві системи збігаються у час , перетворення з обертових координат у інерційні координати можна записати як:
тоді як зворотнє перетворення
Результат можна отримати з матриці повороту.
Введемо одиничні вектори що представлятимуть стандартні одиничні базисні вектори обертової системи відліку. Далі знайдемо часову похідну цих одиничних векторів у обертовій системі відліку. Припустимо, що системи відліку вирівняні в час t = 0 і z-вісь є віссю обертання. Тоді для обертання проти годинникової стрілки на кут Ωt:
де (x, y) компоненти виражені у стаціонарну систему відліку. Так само,
Отже, часова похідна цих векторів, що обертаються без зміни величини, становить
де . Цей результат також можна отримати через векторний добуток з вектором обертання який спрямований уздовж осі обертання , а саме,
де це або або .
Часові похідні в двох системах відліку
Ми ввели вектори які представляють стандартні одиничні базисні вектори в обертовій системі відліку. По мірі обертання вони залишатимуться нормалізованими. Якщо ми дозволимо їм обертатись зі швидкістю щодо осі тоді кожен одиничний вектор обертової системи відліку кориться такому рівнянню:
Далі, якщо ми маємо вектор-функцію ,
і ми хочемо дослідити її першу похідну, то ми отримуємо (використовуючи правило добутку):
де є швидкістю зміни , як це видно з обертової системи координат. Скорочено диференціювання можна виразити як:
Цей результат відомий як транспортна теорема у аналітичній динаміці і також іноді згадувана як базове кінематичне рівняння.
Зв'язок між векторами швидкостей в двох системах відліку
Вектор швидкості об'єкта це часова похідна позиції об'єкта або
Часова похідна позиції в обертовій системі відліку має дві складові, одну з явної залежності внаслідок руху самої частинки, другу з власного обертання системи відліку. Застосовуючи результат попереднього підрозділу до зміщення , швидкості у двох системах відліку пов'язані таким рівнянням
де індекс i позначає інерційну систему відліку, а r — обертову систему відліку.
Зв'язок між прискореннями у двох системах відліку
Прискорення є другою похідною по часу від позиції або перша похідна по часу від швидкості
де індекс i позначає інерційну систему відліку. Виконавши диференціювання і перестановку деяких членів дає нам прискорення в обертовій системі відліку
де — це видиме прискорення в обертовій системі відліку, доданок представляє відцентрове прискорення, а доданок — це коріолісове прискорення.
Примітки
- Cornelius Lanczos (1986). The Variational Principles of Mechanics (вид. Reprint of Fourth Edition of 1970). Dover Publications. Chapter 4, §5. ISBN .
- John R Taylor (2005). Classical Mechanics. University Science Books. с. 342. ISBN .
- Corless, Martin. Kinematics (PDF). Aeromechanics I Course Notes. Purdue University. с. 213. Процитовано 18 липня 2011.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Oberto va siste ma vi dliku ce osoblivij vipadok neinercijnoyi sistemi vidliku yaka obertayetsya shodo inercijnoyi sistemi vidliku Povsyakdennim prikladom obertovoyi sistemi vidliku ye poverhnya Zemli Sili inerciyiDokladnishe Sila inerciyi Neinercijna sistema vidliku proyavlyaye fiktivni sili Obertova sistema vidliku harakterizuyetsya troma takimi silami vidcentrova sila sila Koriolisa i dlya nerivnomirno obertovih sistem vidliku Zistavlennya obertovih sistem do stacionarnih sistemNastupne ce vivedennya formul dlya priskorennya a takozh fiktivnih sil v obertovij sistemi vidliku Spochatku rozglyadayemo zv yazok mizh koordinatami chastinki v obertovij sistemi vidliku ta yiyi koordinatami v inercijnij stacionarnij sistemi vidliku Todi beruchi pohidnu otrimuyemo formuli yaki pov yazuyut shvidkist chastinki sho sposterigayetsya u cih sistemah vidliku i priskorennya stosovno dvoh sistem vidliku Vikoristovuyuchi priskorennya cherez porivnyannya drugogo zakonu Nyutona sformulovanogo v oboh sistemah vidliku viznachayemo fiktivni sili Zv yazok mizh poziciyami v oboh sistemah vidliku Dlya otrimannya sil inerciyi korisno vmiti konvertuvati koordinati x y z displaystyle left x y z right obertovoyi sistemi vidliku u koordinati x y z displaystyle left x y z right inercijnoyi sistemi vidliku z tim samim pochatkom koordinat i navpaki Yaksho obertannya vidbuvayetsya shodo osi z displaystyle z z kutovoyu shvidkistyu W displaystyle Omega i dvi sistemi zbigayutsya u chas t 0 displaystyle t 0 peretvorennya z obertovih koordinat u inercijni koordinati mozhna zapisati yak x x cos 8 t y sin 8 t displaystyle x x cos left theta t right y sin left theta t right y x sin 8 t y cos 8 t displaystyle y x sin left theta t right y cos left theta t right todi yak zvorotnye peretvorennya x x cos 8 t y sin 8 t displaystyle x x cos left theta t right y sin left theta t right y x sin 8 t y cos 8 t displaystyle y x sin left theta t right y cos left theta t right Rezultat mozhna otrimati z matrici povorotu Vvedemo odinichni vektori i ȷ k displaystyle hat boldsymbol imath hat boldsymbol jmath hat boldsymbol k sho predstavlyatimut standartni odinichni bazisni vektori obertovoyi sistemi vidliku Dali znajdemo chasovu pohidnu cih odinichnih vektoriv u obertovij sistemi vidliku Pripustimo sho sistemi vidliku virivnyani v chas t 0 i z vis ye vissyu obertannya Todi dlya obertannya proti godinnikovoyi strilki na kut Wt i t cos 8 t sin 8 t displaystyle hat boldsymbol imath t cos theta t sin theta t de x y komponenti virazheni u stacionarnu sistemu vidliku Tak samo ȷ t sin 8 t cos 8 t displaystyle hat boldsymbol jmath t sin theta t cos theta t Otzhe chasova pohidna cih vektoriv sho obertayutsya bez zmini velichini stanovit d d t i t W sin 8 t cos 8 t W ȷ displaystyle frac d dt hat boldsymbol imath t Omega sin theta t cos theta t Omega hat boldsymbol jmath d d t ȷ t W cos 8 t sin 8 t W i displaystyle frac d dt hat boldsymbol jmath t Omega cos theta t sin theta t Omega hat boldsymbol imath de W d d t 8 t displaystyle Omega equiv frac d dt theta t Cej rezultat takozh mozhna otrimati cherez vektornij dobutok z vektorom obertannya W displaystyle boldsymbol Omega yakij spryamovanij uzdovzh osi obertannya z displaystyle z W 0 0 W displaystyle boldsymbol Omega 0 0 Omega a same d d t u W u displaystyle frac d dt hat boldsymbol u boldsymbol Omega times hat boldsymbol u de u displaystyle hat boldsymbol u ce abo i displaystyle hat boldsymbol imath abo ȷ displaystyle hat boldsymbol jmath Chasovi pohidni v dvoh sistemah vidliku Mi vveli vektori i ȷ k displaystyle hat boldsymbol imath hat boldsymbol jmath hat boldsymbol k yaki predstavlyayut standartni odinichni bazisni vektori v obertovij sistemi vidliku Po miri obertannya voni zalishatimutsya normalizovanimi Yaksho mi dozvolimo yim obertatis zi shvidkistyu W displaystyle Omega shodo osi W displaystyle boldsymbol Omega todi kozhen odinichnij vektor u displaystyle hat boldsymbol u obertovoyi sistemi vidliku koritsya takomu rivnyannyu d d t u W u displaystyle frac d dt hat boldsymbol u boldsymbol Omega times hat u Dali yaksho mi mayemo vektor funkciyu f displaystyle boldsymbol f f t f x t i f y t ȷ f z t k displaystyle boldsymbol f t f x t hat boldsymbol imath f y t hat boldsymbol jmath f z t hat boldsymbol k i mi hochemo dosliditi yiyi pershu pohidnu to mi otrimuyemo vikoristovuyuchi pravilo dobutku d d t f d f x d t i d i d t f x d f y d t ȷ d ȷ d t f y d f z d t k d k d t f z displaystyle frac d dt boldsymbol f frac df x dt hat boldsymbol imath frac d hat boldsymbol imath dt f x frac df y dt hat boldsymbol jmath frac d hat boldsymbol jmath dt f y frac df z dt hat boldsymbol k frac d hat boldsymbol k dt f z d f x d t i d f y d t ȷ d f z d t k W f x i f y ȷ f z k displaystyle frac df x dt hat boldsymbol imath frac df y dt hat boldsymbol jmath frac df z dt hat boldsymbol k boldsymbol Omega times f x hat boldsymbol imath f y hat boldsymbol jmath f z hat boldsymbol k d f d t r W f t displaystyle left frac d boldsymbol f dt right r boldsymbol Omega times f t dd de d f d t r displaystyle left frac d boldsymbol f dt right r ye shvidkistyu zmini f displaystyle boldsymbol f yak ce vidno z obertovoyi sistemi koordinat Skorocheno diferenciyuvannya mozhna viraziti yak d d t f d d t r W f displaystyle frac d dt boldsymbol f left left frac d dt right r boldsymbol Omega times right boldsymbol f dd Cej rezultat vidomij yak transportna teorema u analitichnij dinamici i takozh inodi zgaduvana yak bazove kinematichne rivnyannya Zv yazok mizh vektorami shvidkostej v dvoh sistemah vidliku Vektor shvidkosti ob yekta ce chasova pohidna poziciyi ob yekta abo v d e f d r d t displaystyle mathbf v stackrel mathrm def frac d mathbf r dt Chasova pohidna poziciyi r t displaystyle boldsymbol r t v obertovij sistemi vidliku maye dvi skladovi odnu z yavnoyi zalezhnosti vnaslidok ruhu samoyi chastinki drugu z vlasnogo obertannya sistemi vidliku Zastosovuyuchi rezultat poperednogo pidrozdilu do zmishennya r t displaystyle boldsymbol r t shvidkosti u dvoh sistemah vidliku pov yazani takim rivnyannyam v i d e f d r d t d r d t r W r v r W r displaystyle mathbf v i stackrel mathrm def frac d mathbf r dt left frac d mathbf r dt right mathrm r boldsymbol Omega times mathbf r mathbf v mathrm r boldsymbol Omega times mathbf r de indeks i poznachaye inercijnu sistemu vidliku a r obertovu sistemu vidliku Zv yazok mizh priskorennyami u dvoh sistemah vidliku Priskorennya ye drugoyu pohidnoyu po chasu vid poziciyi abo persha pohidna po chasu vid shvidkosti a i d e f d 2 r d t 2 i d v d t i d d t r W d r d t r W r displaystyle mathbf a mathrm i stackrel mathrm def left frac d 2 mathbf r dt 2 right mathrm i left frac d mathbf v dt right mathrm i left left frac d dt right mathrm r boldsymbol Omega times right left left frac d mathbf r dt right mathrm r boldsymbol Omega times mathbf r right de indeks i poznachaye inercijnu sistemu vidliku Vikonavshi diferenciyuvannya i perestanovku deyakih chleniv daye nam priskorennya v obertovij sistemi vidliku a r a i 2 W v r W W r d W d t r displaystyle mathbf a mathrm r mathbf a mathrm i 2 boldsymbol Omega times mathbf v mathrm r boldsymbol Omega times boldsymbol Omega times mathbf r frac d boldsymbol Omega dt times mathbf r de a r d e f d 2 r d t 2 r displaystyle mathbf a mathrm r stackrel mathrm def left frac d 2 mathbf r dt 2 right mathrm r ce vidime priskorennya v obertovij sistemi vidliku dodanok W W r displaystyle boldsymbol Omega times boldsymbol Omega times mathbf r predstavlyaye vidcentrove priskorennya a dodanok 2 W v r displaystyle 2 boldsymbol Omega times mathbf v mathrm r ce koriolisove priskorennya PrimitkiCornelius Lanczos 1986 The Variational Principles of Mechanics vid Reprint of Fourth Edition of 1970 Dover Publications Chapter 4 5 ISBN 0 486 65067 7 John R Taylor 2005 Classical Mechanics University Science Books s 342 ISBN 1 891389 22 X Corless Martin Kinematics PDF Aeromechanics I Course Notes Purdue University s 213 Procitovano 18 lipnya 2011