Гіромагні́тне співвідно́шення (магнітомеханічне відношення) — коефіцієнт пропорційності між магнітним дипольним моментом і моментом кількості руху частинки.
Гіромагнітне співвідношення зазвичай позначається грецькою літерою γ.
- ,
де M — магнітний дипольний момент, а L — момент кількості руху.
Гіромагнітне співвідношення для різних часток залежить від їхнього заряду, маси й типу частки.
Для класичної частки гіромагнітне співвідношення дорівнює
- , (формулу записано в системі СГСГ)
де q — електричний заряд частки, m — її маса, c — швидкість світла.
g-фактор Ланде
Для квантових частинок гіромагнітне співвідношення може відрізнятися на певний множник, який позначають літерою g і називають g-фактором Ланде .
- ,
де — класичне значення гіромагнітного співвідношення.
Для класичних часток g-фактор Ланде дорівнює одиниці.
Для вільного електрона, як квантової частки із напівцілим спіном, експериментально визначений g-фактор трошки перевищує двійку:
Формула для розрахунку g-фактора Ланде
Загалом для кватнової системи, наприклад молекули, із квантовим числом повного моменту J, спіновим квантовим числом S і орбітальним квантовим числом L, g-фактор Ланде можна обрахувати за формулою
- .
У випадку, коли S = 0, J = L, тож g = 1.
У випадку, коли L = 0, J=S, тож g = 2.
Джерела
- Білий М. У., Атомна фізика. — К. : Знання, 2009. — 559 с.
- Булавін Л. А., Тартаковський В. К. Ядерна фізика. — К. : Знання, 2005. — 439 с.
- Федорченко А. М. Теоретична механіка. — К. : Вища школа, 1975. — 516 с.
- Юхновський І. Р. Основи квантової механіки. — К. : Либідь, 2002. — 392 с.
Це незавершена стаття з фізики. Ви можете проєкту, виправивши або дописавши її. |
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Giromagni tne spivvidno shennya magnitomehanichne vidnoshennya koeficiyent proporcijnosti mizh magnitnim dipolnim momentom i momentom kilkosti ruhu chastinki Giromagnitne spivvidnoshennya zazvichaj poznachayetsya greckoyu literoyu g g ML displaystyle gamma frac M L de M magnitnij dipolnij moment a L moment kilkosti ruhu Giromagnitne spivvidnoshennya dlya riznih chastok zalezhit vid yihnogo zaryadu masi j tipu chastki Dlya klasichnoyi chastki giromagnitne spivvidnoshennya dorivnyuye g q2mc displaystyle gamma frac q 2mc formulu zapisano v sistemi SGSG de q elektrichnij zaryad chastki m yiyi masa c shvidkist svitla g faktor LandeDokladnishe Mnozhnik Lande Dlya kvantovih chastinok giromagnitne spivvidnoshennya mozhe vidriznyatisya na pevnij mnozhnik yakij poznachayut literoyu g i nazivayut g faktorom Lande g gg0 displaystyle gamma g gamma 0 de g0 displaystyle gamma 0 klasichne znachennya giromagnitnogo spivvidnoshennya Dlya klasichnih chastok g faktor Lande dorivnyuye odinici Dlya vilnogo elektrona yak kvantovoyi chastki iz napivcilim spinom eksperimentalno viznachenij g faktor troshki perevishuye dvijku ge 2 0023193043617 15 displaystyle g e 2 0023193043617 15 Formula dlya rozrahunku g faktora LandeZagalom dlya kvatnovoyi sistemi napriklad molekuli iz kvantovim chislom povnogo momentu J spinovim kvantovim chislom S i orbitalnim kvantovim chislom L g faktor Lande mozhna obrahuvati za formuloyu g 1 J J 1 L L 1 S S 1 2J J 1 displaystyle g 1 frac J J 1 L L 1 S S 1 2J J 1 U vipadku koli S 0 J L tozh g 1 U vipadku koli L 0 J S tozh g 2 DzherelaBilij M U Atomna fizika K Znannya 2009 559 s Bulavin L A Tartakovskij V K Yaderna fizika K Znannya 2005 439 s Fedorchenko A M Teoretichna mehanika K Visha shkola 1975 516 s Yuhnovskij I R Osnovi kvantovoyi mehaniki K Libid 2002 392 s Ce nezavershena stattya z fiziki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi