Граф Мура — регулярний граф степеня і діаметра , число вершин якого дорівнює верхній межі
Еквівалентне визначення графа Мура — це граф діаметра з обхватом . Ще одне еквівалентне визначення графа Мура — це граф із обхватом , що має рівно циклів довжини , де , — число вершин і ребер графа . Графи, фактично, екстремальні щодо числа циклів, довжина яких дорівнює обхвату графа.
[en] і Роберт Сінглтон назвали граф ім'ям Едварда Мура, який поставив питання опису та класифікації таких графів.
Маючи максимально можливе число вершин для заданої комбінації степеня і діаметра, графи Мура мають мінімально можливе число вершин для регулярних графів із заданими степенем і обхватом. Таким чином, будь-який граф Мура є кліткою. Формулу для числа вершин графа Мура можна узагальнити для можливості визначення графів Мура з парним обхватом, і ці графи знову ж є клітками.
Межі числа вершин за степенем і діаметром
Нехай — будь-який граф із найбільшим степенем і діаметром , тоді візьмемо дерево, утворене пошуком у ширину, з коренем у вершині . Це дерево має 1 вершину рівня 0 (сама вершина ), і максимум вершин рівня 1 (сусіди вершини ). На наступному рівні є максимум вершин — кожен сусід вершини використовує одне ребро для з'єднання з вершиною , так що має максимум сусідів рівня 2. У загальному випадку подібні доводи показують, що на будь-якому рівні може бути не більше вершин. Таким чином, загальне число вершин може бути не більшим від
Гоффман і Сінглтон спочатку визначили граф Мура як граф, для якого ця межа числа вершин досягається. Таким чином, будь-який граф Мура має максимально можливе число вершин серед усіх графів, у яких степінь не перевершує , а діаметр — .
Пізніше Сінглтон показав, що графи Мура можна еквівалентно визначити як граф, що має діаметр і обхват . Ці дві вимоги комбінуються, з чого виводиться d-регулярність графа для деякого .
Графи Мура як клітки
Замість верхньої межі числа вершин у графі в термінах його найбільшого степеня і діаметра ми можемо використовувати нижню межу числа вершин у термінах найменшого степеня і обхвату. Припустимо, що граф має найменший степінь і обхват . Виберемо довільну початкову вершину і, як і раніше, уявимо дерево пошуку в ширину з коренем у . Це дерево повинне мати одну вершину рівня 0 (сама вершина ) і щонайменше вершин на рівні 1. На рівні 2 (для ), має бути щонайменше вершин, оскільки кожна вершина на рівні має щонайменше ще зв'язків, і ніякі дві вершини рівня 1 не можуть бути суміжними або мати спільні вершини рівня 2, оскільки утворився б цикл, коротший, ніж обхват. У загальному випадку схожі доводи показують, що на будь-якому рівні має бути принаймні вершин. Таким чином, загальне число вершин має бути не менше від
У графі Мура це число вершин досягається. Кожен граф Мура має обхват рівно — він не має достатньо вершин, щоб мати більший обхват, а коротший цикл призвів би до нестачі вершин на перших рівнях деяких дерев пошуку в ширину. Таким чином, будь-який граф Мура має мінімально можливе число вершин серед усіх графів з мінімальним степенем і діаметром — він є кліткою.
Для парного обхвату можна утворити аналогічне дерево пошуку в ширину, починаючи зі середини одного ребра. Отримуємо межу мінімального числа вершин у графі цього обхвату з мінімальним степенем
Таким чином, до графів Мура іноді відносять графи, на яких ця межа досягається. Знову ж, будь-який такий граф є кліткою.
Приклад
Теорема Гоффмана — Сінглтона стверджує, що будь-який граф Мура з обхватом 5 повинен мати степінь 2, 3, 7 або 57. Графами Мура є:
- Повні графи з N > 2 вершинами (діаметр 1, обхват 3, степінь n-1, порядок ).
- Непарний цикл (діаметр , обхват , степінь 2, порядок 2n+1).
- Граф Петерсена (діаметр 2, обхват 5, степінь 3, порядок 10).
- Граф Гоффмана-Сінглтона (діаметр 2, обхват 5, степінь 7, порядок 50).
- Гіпотетичний граф з діаметром 2, обхватом 5, степенем 57 і порядком 3250, нині невідомо, чи такий існує.
Хіґман показав, що, на відміну від інших графів Мура, невідомий граф не може бути вершинно-транзитивним. Мачай і Ширан пізніше показали, що порядок автоморфізмів такого графа не перевищує 375.
В узагальненому визначенні графів Мура, де дозволяється парний обхват, графи з парним обхватом відповідають графам інцидентності (можливо вироджених) узагальнених багатокутників. Кілька прикладів — парні цикли , повні двочасткові графи з обхватом чотири, граф Хівуда зі степенем 3 і обхватом 6 і граф Татта — Коксетера зі степенем 3 і обхватом 8. Відомо, що всі графи Мура, крім перерахованих вище, повинні мати обхват 5, 6, 8 або 12. Випадок парного обхвату випливає з теореми Фейта — Хіґмана про можливі значення для узагальнених n-кутників.
Див. також
Примітки
Література
- Jernej Azarija, Sandi Klavžar. Moore Graphs and Cycles Are Extremal Graphs for Convex Cycles // . — 2015. — Т. 80 (28 червня). — С. 34–42. — DOI: .
- Béla Bollobás. Modern graph theory. — Springer-Verlag, 1998. — Т. 184. — ().
- E. Bannai, T. Ito. On finite Moore graphs // Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics. — 1973. — Т. 20 (28 червня). — С. 191–208. з джерела 24 квітня 2012.
- R. M. Damerell. On Moore graphs // Mathematical Proceedings of the Cambridge Philosophical Society. — 1973. — Т. 74 (28 червня). — С. 227–236. — DOI: .
- Paul Erdős, Alfréd Rényi, Vera T. Sós. On a problem of graph theory // Studia Sci. Math. Hungar.. — 1966. — Т. 1 (28 червня). — С. 215–235. з джерела 9 березня 2016. Процитовано 3 лютого 2022..
- Alan J. Hoffman, Robert R. Singleton. Moore graphs with diameter 2 and 3 // IBM Journal of Research and Development. — 1960. — Т. 5, вип. 4 (28 червня). — С. 497–504. — DOI: .
- Martin Mačaj, Jozef Širáň. Search for properties of the missing Moore graph // . — 2010. — Т. 432 (28 червня). — С. 2381–2398. — DOI: . з джерела 3 лютого 2022. Процитовано 3 лютого 2022..
- Robert R. Singleton. There is no irregular Moore graph // American Mathematical Monthly. — 1968. — Т. 75, вип. 1 (28 червня). — С. 42–43. — DOI: .
Посилання
- [en] і Віллем Гемерс (Willem H. Haemers): Spectra of graphs [ 3 жовтня 2017 у Wayback Machine.]
- Weisstein, Eric W. Граф Мура(англ.) на сайті Wolfram MathWorld.
- Weisstein, Eric W. Теорема Гоффмана — Сінглтона(англ.) на сайті Wolfram MathWorld.
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Graf Mura regulyarnij graf stepenya d displaystyle d i diametra k displaystyle k chislo vershin yakogo dorivnyuye verhnij mezhi 1 d i 0 k 1 d 1 i displaystyle 1 d sum i 0 k 1 d 1 i Ekvivalentne viznachennya grafa Mura ce graf diametra k displaystyle k z obhvatom 2 k 1 displaystyle 2k 1 She odne ekvivalentne viznachennya grafa Mura G displaystyle G ce graf iz obhvatom g 2 k 1 displaystyle g 2k 1 sho maye rivno n g m n 1 displaystyle frac n g m n 1 cikliv dovzhini g displaystyle g de n displaystyle n m displaystyle m chislo vershin i reber grafa G displaystyle G Grafi faktichno ekstremalni shodo chisla cikliv dovzhina yakih dorivnyuye obhvatu grafa en i Robert Singlton nazvali graf im yam Edvarda Mura yakij postaviv pitannya opisu ta klasifikaciyi takih grafiv Mayuchi maksimalno mozhlive chislo vershin dlya zadanoyi kombinaciyi stepenya i diametra grafi Mura mayut minimalno mozhlive chislo vershin dlya regulyarnih grafiv iz zadanimi stepenem i obhvatom Takim chinom bud yakij graf Mura ye klitkoyu Formulu dlya chisla vershin grafa Mura mozhna uzagalniti dlya mozhlivosti viznachennya grafiv Mura z parnim obhvatom i ci grafi znovu zh ye klitkami Mezhi chisla vershin za stepenem i diametromGraf Petersena yak graf Mura Bud yake derevo poshuku v shirinu maye d d 1 i displaystyle d d 1 i vershin u jogo i omu rivni Nehaj G displaystyle G bud yakij graf iz najbilshim stepenem d displaystyle d i diametrom k displaystyle k todi vizmemo derevo utvorene poshukom u shirinu z korenem u vershini v displaystyle v Ce derevo maye 1 vershinu rivnya 0 sama vershina v displaystyle v i maksimum d displaystyle d vershin rivnya 1 susidi vershini v displaystyle v Na nastupnomu rivni ye maksimum d d 1 displaystyle d d 1 vershin kozhen susid vershini v displaystyle v vikoristovuye odne rebro dlya z yednannya z vershinoyu v displaystyle v tak sho maye maksimum d 1 displaystyle d 1 susidiv rivnya 2 U zagalnomu vipadku podibni dovodi pokazuyut sho na bud yakomu rivni 1 i k displaystyle 1 leq i leq k mozhe buti ne bilshe d d 1 i displaystyle d d 1 i vershin Takim chinom zagalne chislo vershin mozhe buti ne bilshim vid 1 d i 0 k 1 d 1 i displaystyle 1 d sum i 0 k 1 d 1 i Goffman i Singlton spochatku viznachili graf Mura yak graf dlya yakogo cya mezha chisla vershin dosyagayetsya Takim chinom bud yakij graf Mura maye maksimalno mozhlive chislo vershin sered usih grafiv u yakih stepin ne perevershuye d displaystyle d a diametr k displaystyle k Piznishe Singlton pokazav sho grafi Mura mozhna ekvivalentno viznachiti yak graf sho maye diametr k displaystyle k i obhvat 2 k 1 displaystyle 2k 1 Ci dvi vimogi kombinuyutsya z chogo vivoditsya d regulyarnist grafa dlya deyakogo d displaystyle d Grafi Mura yak klitkiZamist verhnoyi mezhi chisla vershin u grafi v terminah jogo najbilshogo stepenya i diametra mi mozhemo vikoristovuvati nizhnyu mezhu chisla vershin u terminah najmenshogo stepenya i obhvatu Pripustimo sho graf G displaystyle G maye najmenshij stepin d displaystyle d i obhvat 2 k 1 displaystyle 2k 1 Viberemo dovilnu pochatkovu vershinu v displaystyle v i yak i ranishe uyavimo derevo poshuku v shirinu z korenem u v displaystyle v Ce derevo povinne mati odnu vershinu rivnya 0 sama vershina v displaystyle v i shonajmenshe d displaystyle d vershin na rivni 1 Na rivni 2 dlya k gt 1 displaystyle k gt 1 maye buti shonajmenshe d d 1 displaystyle d d 1 vershin oskilki kozhna vershina na rivni l displaystyle l maye shonajmenshe she d 1 displaystyle d 1 zv yazkiv i niyaki dvi vershini rivnya 1 ne mozhut buti sumizhnimi abo mati spilni vershini rivnya 2 oskilki utvorivsya b cikl korotshij nizh obhvat U zagalnomu vipadku shozhi dovodi pokazuyut sho na bud yakomu rivni 1 i k displaystyle 1 leq i leq k maye buti prinajmni d d 1 i displaystyle d d 1 i vershin Takim chinom zagalne chislo vershin maye buti ne menshe vid 1 d i 0 k 1 d 1 i displaystyle 1 d sum i 0 k 1 d 1 i U grafi Mura ce chislo vershin dosyagayetsya Kozhen graf Mura maye obhvat rivno 2 k 1 displaystyle 2k 1 vin ne maye dostatno vershin shob mati bilshij obhvat a korotshij cikl prizviv bi do nestachi vershin na pershih k displaystyle k rivnyah deyakih derev poshuku v shirinu Takim chinom bud yakij graf Mura maye minimalno mozhlive chislo vershin sered usih grafiv z minimalnim stepenem d displaystyle d i diametrom k displaystyle k vin ye klitkoyu Dlya parnogo obhvatu 2 k displaystyle 2k mozhna utvoriti analogichne derevo poshuku v shirinu pochinayuchi zi seredini odnogo rebra Otrimuyemo mezhu minimalnogo chisla vershin u grafi cogo obhvatu z minimalnim stepenem d displaystyle d 2 i 0 k 1 d 1 i 1 d 1 k 1 d i 0 k 2 d 1 i displaystyle 2 sum i 0 k 1 d 1 i 1 d 1 k 1 d sum i 0 k 2 d 1 i Takim chinom do grafiv Mura inodi vidnosyat grafi na yakih cya mezha dosyagayetsya Znovu zh bud yakij takij graf ye klitkoyu PrikladTeorema Goffmana Singltona stverdzhuye sho bud yakij graf Mura z obhvatom 5 povinen mati stepin 2 3 7 abo 57 Grafami Mura ye Povni grafi K n displaystyle K n z N gt 2 vershinami diametr 1 obhvat 3 stepin n 1 poryadok n displaystyle n Neparnij cikl C 2 n 1 displaystyle C 2n 1 diametr n displaystyle n obhvat 2 n 1 displaystyle 2n 1 stepin 2 poryadok 2n 1 Graf Petersena diametr 2 obhvat 5 stepin 3 poryadok 10 Graf Goffmana Singltona diametr 2 obhvat 5 stepin 7 poryadok 50 Gipotetichnij graf z diametrom 2 obhvatom 5 stepenem 57 i poryadkom 3250 nini nevidomo chi takij isnuye Higman pokazav sho na vidminu vid inshih grafiv Mura nevidomij graf ne mozhe buti vershinno tranzitivnim Machaj i Shiran piznishe pokazali sho poryadok avtomorfizmiv takogo grafa ne perevishuye 375 V uzagalnenomu viznachenni grafiv Mura de dozvolyayetsya parnij obhvat grafi z parnim obhvatom vidpovidayut grafam incidentnosti mozhlivo virodzhenih uzagalnenih bagatokutnikiv Kilka prikladiv parni cikli C 2 n displaystyle C 2n povni dvochastkovi grafi K n n displaystyle K n n z obhvatom chotiri graf Hivuda zi stepenem 3 i obhvatom 6 i graf Tatta Koksetera zi stepenem 3 i obhvatom 8 Vidomo sho vsi grafi Mura krim pererahovanih vishe povinni mati obhvat 5 6 8 abo 12 Vipadok parnogo obhvatu viplivaye z teoremi Fejta Higmana pro mozhlivi znachennya n displaystyle n dlya uzagalnenih n kutnikiv Div takozhZadacha stepenya diametra en PrimitkiAzarija Klavzar 2015 Hoffman Singleton 1960 Erdos Renyi Sos 1966 Singleton 1968 Bannai Ito 1973 Damerell 1973 LiteraturaJernej Azarija Sandi Klavzar Moore Graphs and Cycles Are Extremal Graphs for Convex Cycles 2015 T 80 28 chervnya S 34 42 DOI 10 1002 jgt 21837 Bela Bollobas Modern graph theory Springer Verlag 1998 T 184 E Bannai T Ito On finite Moore graphs Journal of the Faculty of Science the University of Tokyo Sect 1 A Mathematics 1973 T 20 28 chervnya S 191 208 z dzherela 24 kvitnya 2012 R M Damerell On Moore graphs Mathematical Proceedings of the Cambridge Philosophical Society 1973 T 74 28 chervnya S 227 236 DOI 10 1017 S0305004100048015 Paul Erdos Alfred Renyi Vera T Sos On a problem of graph theory Studia Sci Math Hungar 1966 T 1 28 chervnya S 215 235 z dzherela 9 bereznya 2016 Procitovano 3 lyutogo 2022 Alan J Hoffman Robert R Singleton Moore graphs with diameter 2 and 3 IBM Journal of Research and Development 1960 T 5 vip 4 28 chervnya S 497 504 DOI 10 1147 rd 45 0497 Martin Macaj Jozef Siran Search for properties of the missing Moore graph 2010 T 432 28 chervnya S 2381 2398 DOI 10 1016 j laa 2009 07 018 z dzherela 3 lyutogo 2022 Procitovano 3 lyutogo 2022 Robert R Singleton There is no irregular Moore graph American Mathematical Monthly 1968 T 75 vip 1 28 chervnya S 42 43 DOI 10 2307 2315106 Posilannya en i Villem Gemers Willem H Haemers Spectra of graphs 3 zhovtnya 2017 u Wayback Machine Weisstein Eric W Graf Mura angl na sajti Wolfram MathWorld Weisstein Eric W Teorema Goffmana Singltona angl na sajti Wolfram MathWorld