Підтримка
www.wikidata.uk-ua.nina.az
Teore ma Rado na Niko dima v funkcionalnomu analizi i sumizhnih disciplinah opisuye zagalnij vid miri absolyutno neperervnoyi shodo inshoyi miri FormulyuvannyaNehaj X F m displaystyle X mathcal F mu prostir z miroyu i mira m displaystyle mu ye s displaystyle sigma skinchennoyu Todi yaksho mira n F R displaystyle nu colon mathcal F to mathbb R ye absolyutno neperervnoyu vidnosno m displaystyle mu n m displaystyle nu ll mu to isnuye vimirna funkciya f X R displaystyle f colon X to mathbb R taka sho n A A f x m d x A F displaystyle nu A int limits A f x mu dx quad forall A in mathcal F de integral rozumiyetsya v sensi Lebega Yaksho g displaystyle g ye inshoyu funkciyeyu sho zadovolnyaye tverdzhennya teoremi to f g displaystyle f g m displaystyle mu majzhe vsyudi Dlya zaryadiv i kompleksnih mir Nehaj X F m displaystyle X mathcal F mu prostir z miroyu i mira m displaystyle mu ye s displaystyle sigma skinchennoyu i n displaystyle nu ye s aditivnim zaryadom abo kompleksnoyu miroyu i n m displaystyle nu ll mu tobto n displaystyle nu ye absolyutno neperervnim shodo m displaystyle mu to isnuye m displaystyle mu vimirna dijsno chi kompleksnoznachna funkciya f displaystyle f na X displaystyle X taka sho dlya kozhnoyi vimirnoyi mnozhini A displaystyle A n A A f d m displaystyle nu A int A f d mu Yaksho g displaystyle g ye inshoyu funkciyeyu sho zadovolnyaye tverdzhennya teoremi to f g displaystyle f g m displaystyle mu majzhe vsyudi Pov yazani viznachennyaFunkciya f displaystyle f isnuvannya yakoyi garantuyetsya teoremoyu Radona Nikodima nazivayetsya pohidnoyu Radona Nikodima miri n displaystyle nu shodo miri m displaystyle mu Pishut f d n d m displaystyle f frac d nu d mu Yaksho X F R k B R k displaystyle X mathcal F left mathbb R k mathcal B left mathbb R k right right k displaystyle k vimirnij vektornij prostir z borelivskoyu s algebroyu n P X displaystyle nu mathbb P X rozpodil deyakoyi vipadkovoyi velichini X displaystyle X a m m displaystyle mu m mira Lebega na R k displaystyle mathbb R k to pohidna Radona Nikodima miri P X displaystyle mathbb P X shodo miri m displaystyle m nazivayetsya shilnistyu rozpodilu vipadkovoyi velichini X displaystyle X VlastivostiNehaj l m n displaystyle lambda mu nu s displaystyle sigma skinchenni miri viznacheni na odnomu i tomu zh prostori z miroyu X F displaystyle X mathcal F Todi yaksho m l displaystyle mu ll lambda i n l displaystyle nu ll lambda to d m n d l d m d l d n d l displaystyle frac d mu nu d lambda frac d mu d lambda frac d nu d lambda Nehaj n m l displaystyle nu ll mu ll lambda Todi d n d l d n d m d m d l displaystyle frac d nu d lambda frac d nu d mu frac d mu d lambda l displaystyle lambda majzhe vsyudi Nehaj m l displaystyle mu ll lambda i g X R displaystyle g colon X to mathbb R vimirna funkciya integrovana shodo miri m displaystyle mu to X g x m d x X g x d m d l x l d x displaystyle int limits X g x mu dx int limits X g x frac d mu d lambda x lambda dx Nehaj m n displaystyle mu ll nu i n m displaystyle nu ll mu Todi d m d n d n d m 1 displaystyle frac d mu d nu left frac d nu d mu right 1 Nehaj n displaystyle nu zaryad Todi d n d m d n d m displaystyle d nu over d mu left d nu over d mu right Pripushennya s skinchennostiU vipadku yaksho mira m displaystyle mu ne ye s skinchennoyu todi tverdzhennya teoremi ne vikonuyetsya Dlya prikladu mozhna rozglyanuti borelivsku s algebru na mnozhini dijsnih chisel Na danij s algebri mozhna zadati miru m displaystyle mu sho rivna kilkosti elementiv mnozhini dlya skinchennih mnozhin i v inshomu vipadku Viznachena takim chinom mira ne ye s skinchennoyu oskilki ne vsi borelivski mnozhini ye zlichennimi Nehaj n displaystyle nu mira Lebega n displaystyle nu absolyutno neperervna vidnosno m displaystyle mu oskilki yedina mnozhina A nulovoyi miri m displaystyle mu pusta mnozhina i todi n A 0 Yaksho pripustiti sho teorema Radona Nikodima spravdzhuyetsya to isnuye vimirna funkciya f dlya yakoyi n A A f d m displaystyle nu A int A f mathrm d mu dlya vsih borelivskih mnozhin Nehaj A dovilna odnoelementna mnozhina A a i vikoristovuyuchi zgadanu vishe rivnist oderzhuyetsya 0 f a displaystyle 0 f a dlya vsih dijsnih chisel a Zvidsi funkciya f i mira Lebega n ye nulovimi sho superechit oznachennyu miri Lebega DovedennyaNizhche podani dva dovedennya pershe iz yakih vikoristovuye standartni metodi teoriyi miri zokrema vlastivosti s aditivnih zaryadiv Klyuchovu rol u nomu vidigraye teorema Gana pro rozklad mir i rozklad Zhordana Druge vikoristovuye toj fakt sho klasi ekvivalentnosti integrovnih u kvadrati funkcij utvoryuyut gilbertiv prostir i vlastivosti gilbertovih prostoriv zokrema teoremu Risa Dovedennya metodami teoriyi miri Ideya dovedennya polyagaye u tomu sho spershu dlya skinchennih mir m i n rozglyadayutsya funkciyi f dlya yakih f dm dn Teorema dovoditsya iz vikoristannyam supremumu takih funkcij i teoremi Levi promonotonnu zbizhnist Pislya dovedennya tverdzhennya dlya skinchennih mir vono legko uzagalnyuyetsya na s skinchenni miri zaryadi i kompleksni miri Dovedennya dlya skinchennih mir Nehaj m i n ye skinchennimi nevid yemnimi mirami i F poznachaye mnozhinu vimirnih funkcij f X 0 dlya yakih A S A f d m n A displaystyle forall A in Sigma qquad int A f d mu leq nu A F ne ye porozhnoyu oskilki mistit prinajmni nulovu funkciyu Nehaj f1 f2 F i dlya vimirnoyi mnozhini A poznachimo pidmnozhini A 1 x A f 1 x gt f 2 x A 2 x A f 2 x f 1 x displaystyle begin aligned A 1 amp left x in A f 1 x gt f 2 x right A 2 amp left x in A f 2 x geq f 1 x right end aligned Todi A max f 1 f 2 d m A 1 f 1 d m A 2 f 2 d m n A 1 n A 2 n A displaystyle int A max left f 1 f 2 right d mu int A 1 f 1 d mu int A 2 f 2 d mu leq nu left A 1 right nu left A 2 right nu A i tomu takozh max f 1 f 2 F Yaksho fn ye poslidovnistyu funkcij F dlya yakoyi lim n X f n d m sup f F X f d m displaystyle lim n to infty int X f n d mu sup f in F int X f d mu to zaminyuyuchi fn na maksimum pershih n funkcij mozhna pripustiti sho poslidovnist fn ye zrostayuchoyu Nehaj g X 0 ye potochkovoyu graniceyu poslidovnosti g x lim n f n x displaystyle g x lim n to infty f n x Zgidno teoremi Levi pro monotonnu zbizhnist lim n A f n d m A lim n f n x d m x A g d m n A displaystyle lim n to infty int A f n d mu int A lim n to infty f n x d mu x int A g d mu leq nu A dlya kozhnoyi A S i tomu g F Takozh za pobudovoyu X g d m sup f F X f d m displaystyle int X g d mu sup f in F int X f d mu Oskilki g F to funkciya mnozhin zadana yak n 0 A n A A g d m displaystyle nu 0 A nu A int A g d mu ye nevid yemnoyu miroyu na S Neobhidno dovesti sho n0 0 Yaksho pripustiti sho n0 0 to oskilki m ye skinchennoyu miroyu isnuye e gt 0 dlya yakogo n0 X gt e m X Rozglyanemo zaryad n0 e m i jogo dodatnu mnozhinu P S iz rozkladu Gana Todi dlya dovilnoyi A S takozh n0 A P e m A P i tomu n A A g d m n 0 A A g d m n 0 A P A g d m e m A P A g e 1 P d m displaystyle begin aligned nu A amp int A g d mu nu 0 A amp geq int A g d mu nu 0 A cap P amp geq int A g d mu varepsilon mu A cap P int A left g varepsilon 1 P right d mu end aligned de 1P ye harakteristichnoyu funkciyeyu mnozhini P Takozh m P gt 0 adzhe yaksho m P 0 todi iz togo sho n ye absolyutno neperervnim shodo m i n0 P n P 0 viplivaye sho n0 P 0 i n 0 X e m X n 0 e m N 0 displaystyle nu 0 X varepsilon mu X left nu 0 varepsilon mu right N leq 0 de N S ye vid yemnoyu mnozhinoyu iz rozkladu Gana Ostannya nerivnist superechit tomu sho n0 X gt em X Oskilki takozh X g e 1 P d m n X lt displaystyle int X left g varepsilon 1 P right d mu leq nu X lt infty to g e 1P F i X g e 1 P d m gt X g d m sup f F X f d m displaystyle int X left g varepsilon 1 P right d mu gt int X g d mu sup f in F int X f d mu Cya nerivnist ye nemozhlivoyu i tomu pripushennya sho n0 0 ye hibnim i n0 0 Oskilki g ye m integrovnoyu to mnozhina x X g x maye m miru rivnu nulyu Tomu funkciya f viznachena yak f x g x g x lt 0 g x displaystyle f x begin cases g x amp g x lt infty 0 amp g x infty end cases ye dijsnoznachnoyu funkciyeyu sho zadovolnyaye umovi teoremi Radona Nikodima Nehaj f g X 0 ye dvoma vimirnimi funkciyami dlya yakih n A A f d m A g d m displaystyle nu A int A f d mu int A g d mu dlya kozhnoyi vimirnoyi mnozhini A Todi g f ye m integrovnoyu i A g f d m 0 displaystyle int A g f d mu 0 Zokrema dlya A x X f x gt g x abo x X f x lt g x Zvidsi viplivaye sho X g f d m 0 X g f d m displaystyle int X g f d mu 0 int X g f d mu i tomu g f 0 m majzhe syudi take zh tverdzhennya ye virnim i dlya g f i tomu f g m majzhe vsyudi Dovedennya dlya s skinchennih mir Yaksho m i n ye s skinchennimi to X mozhna zapisati yak diz yunkte ob yednannya mnozhin Bn n iz S kozhna iz yakih maye skinchennu miru u m i n Dlya kozhnogo chisla n iz dovedenogo skinchennogo vipadku isnuye S vimirna funkciya fn Bn 0 dlya yakoyi n n A A f n d m displaystyle nu n A int A f n d mu dlya kozhnoyi S vimirnoyi pidmnozhini A iz Bn Suma n f n 1 B n f textstyle left sum n f n 1 B n right f todi ye neobhidnoyu funkciyeyu dlya yakoyi n A A f d m textstyle nu A int A fd mu Oskilki kozhna iz funkcij fn ye yedinoyu z tochnistyu do mnozhin m miri nul to i f ye yedinoyu z tochnistyu do mnozhin m miri nul Dovedennya dlya zaryadiv i kompleksnih mir Yaksho n ye s skinchennim s aditivnim zaryadom to dlya nogo isnuye rozklad Zhordana n n n de odna iz mir ye skinchennoyu Zastosovuyuchi teoremu Radona Nikodima do cih mir oderzhuyutsya funkciyi g h X 0 prinajmni odna z yakih ye m integrovnoyu Funkciya f g h zadovolnyaye umovi teoremi zokrema i yedinist z tochnistyu do mnozhin m miri nul Yaksho n ye kompleksnoyu miroyu to yiyi mozhna zapisati yak n n1 in2 de n1 i n2 ye skinchennimi s aditivnimi zaryadami Tomu iz poperednogo oderzhuyutsya funkciyi g h X 0 yaki zadovolnyayut tverdzhennya teoremi dlya zaryadiv n1 i n2 vidpovidno Funkciya f g ih todi zadovolnyaye tverdzhennya teoremi Radona Nikodima dlya kompleksnih mir Dovedennya metodami funkcionalnogo analizu Tut dovoditsya vipadok skinchennih nevid yemnih mir Perehid na inshi vipadki analogichnij poperednomu dovedennyu Nehaj f m n displaystyle varphi mu nu ye sumoyu mir Todi dlya bud yakoyi nevid yemnoyi vimirnoyi funkciyi h displaystyle h X h d f X h d m X h d n displaystyle int X h d varphi int X h d mu int X h d nu Prostir L 2 f displaystyle L 2 varphi vsih integrovnih u kvadrati funkcij shodo miri f displaystyle varphi iz vidnoshennyam ekvivalentnosti yake identifikuye funkciyi yaki nabuvayut riznih znachen lishe na mnozhini f displaystyle varphi miri nul ye gilbertovim prostorom Dlya funkciyi f L 2 f displaystyle f in L 2 varphi todi zgidno nerivnosti Koshi Bunyakovskogo dlya gilbertovih prostoriv X h d n X h d n X h d f X h 2 d f 1 2 f X 1 2 displaystyle left int X h d nu right leqslant int X h d nu leqslant int X h d varphi leqslant left int X h 2 d varphi right 1 over 2 varphi X 1 over 2 Oskilki f X displaystyle varphi X ye skinchennim to I n h X h d n displaystyle I nu h int X hd nu ye obmezhenim linijnim funkcionalom na prostori L 2 f displaystyle L 2 varphi Zgidno teoremi Risa isnuye takij element g L 2 f displaystyle g in L 2 varphi sho linijnij funkcional ye rivnij skalyarnomu dobutku na cej element tobto X h d n X h g d f displaystyle int X hd nu int X hgd varphi Yaksho dlya dovilnoyi vimirnoyi mnozhini E displaystyle E zokrema vzyati za h displaystyle h harakteristichnu funkciyu mnozhini E displaystyle E to iz togo sho n f displaystyle nu leqslant varphi viplivaye nerivnist 0 1 f E E g d f 1 displaystyle 0 leqslant frac 1 varphi E int E gd varphi leqslant 1 Oskilki ci nerivnosti vikonuyutsya dlya vsih vimirnih mnozhin E displaystyle E to takozh i 0 g 1 displaystyle 0 leqslant g leqslant 1 majzhe skriz na X displaystyle X shodo miri f displaystyle varphi Dijsno yaksho b ce bulo ne tak to oskilki mnozhina R 0 1 displaystyle mathbb R setminus 0 1 ye ob yednannyam zlichennoyi kilkosti vidkritih intervaliv a b 1 lt a lt b displaystyle a b 1 lt a lt b i d e d lt e lt 0 displaystyle d e d lt e lt 0 to hocha b dlya odnogo takogo intervalu f g 1 a b gt 0 displaystyle varphi g 1 a b gt 0 abo f g 1 d e gt 0 displaystyle varphi g 1 d e gt 0 Yaksho ce spravedlivo dlya pershogo tipu intervaliv to poznachivshi E g 1 a b displaystyle E g 1 a b todi 1 f E E g d f 1 f E E a d f a gt 1 displaystyle frac 1 varphi E int E gd varphi geqslant frac 1 varphi E int E ad varphi a gt 1 sho superechit nerivnostyam vishe dlya dovilnogo E displaystyle E Analogichno dlya drugogo tipu intervaliv poznachivshi E g 1 d e displaystyle E g 1 d e todi 1 f E E g d f 1 f E E e d f e lt 0 displaystyle frac 1 varphi E int E gd varphi leqslant frac 1 varphi E int E e d varphi e lt 0 sho znovu zh superechit zgadanim nerivnostyam Mozhna zminiti funkciyu g displaystyle g na mnozhini f displaystyle varphi miri nul shob nerivnosti 0 g 1 displaystyle 0 leqslant g leqslant 1 vikonuvalisya na vsomu prostori X displaystyle X Iz poperednih rivnostej viplivaye sho dlya vsih h L 2 f displaystyle h in L 2 varphi X h 1 g d n X h g d m displaystyle int X h 1 g d nu int X hgd mu Yaksho poznachiti A x 0 g x lt 0 displaystyle A x 0 leqslant g x lt 0 i B x g x 1 displaystyle B x g x 1 to iz ostannoyi rivnosti dlya h 1 B displaystyle h mathbf 1 B viplivaye sho m B 0 displaystyle mu B 0 i vidpovidno n B 0 displaystyle nu B 0 Iz obmezhenosti funkciyi g displaystyle g viplivaye sho 1 g g 2 g n 1 E L 2 f displaystyle 1 g g 2 ldots g n mathbf 1 E in L 2 varphi Pidstavivshi cyu funkciyu u rivnist integraliv oderzhuyetsya rivnist E 1 g n 1 d n E g 1 g g n d m displaystyle int E 1 g n 1 d nu int E g 1 g ldots g n d mu Dlya usih tochok iz A displaystyle A funkciyi 1 g n 1 displaystyle 1 g n 1 monotonno zrostayut do odinichnoyi funkciyi a na mnozhini B displaystyle B usi funkciyi 1 g n 1 displaystyle 1 g n 1 ye rivnimi nulyu Zvidsi iz vikoristannyam teoremi Levi pro monotonnu zbizhnist lim n E 1 g n 1 d n lim n A E 1 g n 1 d n n A E n E displaystyle lim n to infty int E 1 g n 1 d nu lim n to infty int A cap E 1 g n 1 d nu nu A cap E nu E Poslidovnist funkcij g 1 g g n displaystyle g 1 g ldots g n potochkovo monotonno pryamuye do nevid yemnoyi vimirnoyi funkciyi f displaystyle f i z vikoristannyam teoremi pro monotonnu zbizhnist lim n E g 1 g g n d m E f d m displaystyle lim n to infty int E g 1 g ldots g n d mu int E fd mu i ostatochno dlya vsih vimirnih mnozhin E displaystyle E n E E f d m displaystyle nu E int E fd mu Yaksho u cij formuli vzyati vsyu mnozhinu X displaystyle X to oderzhuyetsya yedinim chinom viznachenij element h L 1 f displaystyle h in L 1 varphi yakij zadovolnyaye umovi teoremi Vsi funkciyi sho zadovolnyayut umovi teoremi vidpovidno nalezhat vkazanomu klasu ekvivalentnosti i mizh soboyu vidriznyayutsya lishe na mnozhini m miri nul Dovedennya teoremi Lebega Poznachennya i shemu cogo dovedennya mozhna vikoristati dlya dovedennya teoremi Lebega pro rozklad miri U vkazanomu dovedenni mozhna rozglyadati miru f displaystyle varphi funkciyu g displaystyle g mnozhini A displaystyle A i B displaystyle B navit yaksho mira n displaystyle nu ne ye absolyutno neperervnoyu shodo m displaystyle mu U comu vipadku takozh m B 0 displaystyle mu B 0 ale zvidsi ne obov yazkovo viplivaye sho n B 0 displaystyle nu B 0 Todi mozhna rozglyanuti miri n 1 E n E B displaystyle nu 1 E nu E cap B i n 2 E n E B displaystyle nu 2 E nu E cap B Miri n 1 displaystyle nu 1 i m displaystyle mu ye singulyarnimi a dlya n 2 displaystyle nu 2 mozhna yak i u dovedenni znajti funkciyu dlya yakoyi n 2 E E f d m displaystyle nu 2 E int E fd mu Zokrema n 2 displaystyle nu 2 ye absolyutno neperervnoyu shodo m displaystyle mu i vidpovidno isnuye rozklad n n 1 n 2 displaystyle nu nu 1 nu 2 miri n displaystyle nu na sumu dvoh mir odna z yakih ye singulyarnoyu a insha absolyutno neperervnoyu shodo miri m displaystyle mu sho i ye tverdzhennyam teoremi Lebega dlya skinchennih mir Yaksho m i n ye s skinchennimi to X mozhna zapisati yak diz yunkte ob yednannya mnozhin Bn n iz S kozhna iz yakih maye skinchennu miru u m i n Todi obmezhennya m i n na kozhnu pidmnozhinu Bn ye skinchennimi mirami i na cij pidmnozhini mozhna vvesti miri n1 i n2 Razom iz zlichennoyi aditivnosti ci miri viznachayutsya na vsomu prostori i persha z nih bude singulyarnoyu a druga absolyutno neperervnoyu shodo miri m Div takozhAbsolyutna neperervnist Vidstan Kulbaka Lejblera Zaryad teoriya miri Teorema Gana pro rozklad Teorema Lebega pro rozklad miriDzherelaDorogovcev A Ya 1989 Elementy obshej teorii mery i integrala K Visha shkola s 152 ISBN 5 11 001190 7 Kolmogorov A N Fomin S V Elementy teorii funkcij i funkcionalnogo analiza 4 e izd Moskva Nauka 1976 544 s ISBN 5 9221 0266 4 ros Halmosh P R Teoriya mery M Izd vo inostr lit 1953 Rudin Walter 1966 Real amp Complex Analysis McGraw Hill ISBN 0 07 054234 1
Топ