Підтримка
www.wikidata.uk-ua.nina.az
Teorema Kolmogorova Arnolda abo skorocheno Teorema KAM rezultat z teoriyi dinamichnih sistem pro vizhivannya kvaziperiodichnogo ruhu vnaslidok diyi zburen Teorema chastkovo virishuye problemu malih znamennikiv yaka vinikaye v teoriyi zburen klasichnoyi mehaniki IstoriyaPershu vidpovid na zapitannya chi prizvodit male zburennya konservativnoyi dinamichnoyi sistemi do ustalenoyi kvaziperiodichnoyi orbiti dav radyanskij matematik Andrij Kolmogorov v 1954 roci Dali strogi dovedennya ta rozshirili problemu Volodimir Arnold v 1963 dlya analitichnih gamiltonovih sistem ta v 1962 dlya gladkih vidobrazhen Zagalnij rezultat troh matematikiv stav vidomim yak teorema KAM FormulyuvannyaTeoremu KAM yak pravilo formulyuyut v terminah trayektorij v fazovomu prostori gamiltonovoyi sistemi Dinamika integrovnih sistem vidbuvayetsya na tak zvanih ci tori ye invariantnimi vidnosno fazovogo potoku sistemi oskilki kozhna fazova kriva sho pochinayetsya z deyakoyi tochki tora na comu tori i zalishayetsya Yaksho dlya dinamichnoyi integrovnoyi sistemi z N stupenyami vilnosti zdijsniti kanonichne peretvorennya i perejti do zminnih diya kut J n 8 n n 1 2 N displaystyle J n theta n n 1 2 N to rivnyannya ruhu v cih zminnih matime viglyad J n H 0 8 n 0 displaystyle dot J n frac partial H 0 partial theta n 0 8 n H 0 J n w n J 1 J 2 J N n 1 2 N displaystyle dot theta n frac partial H 0 partial J n omega n J 1 J 2 J N n 1 2 N Tut H 0 H 0 J 1 J 2 J N displaystyle H 0 H 0 J 1 J 2 J N funkciya Gamiltona integrovnoyi sistemi zminni diyi J n displaystyle J n vidpovidayut radiusam N vimirnogo invariantnogo tora a kutovi zminni 8 n displaystyle theta n opisuyut ruh tochki na tori Takim chinom rizni pochatkovi umovi integrovnoyi sistemi prizvodyat do obmotuvannya riznih invariantnih toriv u fazovomu prostori sistemi Chastoti 8 n displaystyle theta n mistyat informaciyu pro harakter dinamiki sistemi Yaksho yih mozhna pov yazati racionalnim spivvidnoshennyam to maye misce periodichnij ruh yaksho zh spivvidnoshennya chastot irracionalne to ruh kvaziperiodichnij Teorema KAM stverdzhuye sho yaksho sistema perebuvaye pid vplivom slabkogo nelinijnogo zburennya H J 1 J 2 J N H 0 J 1 J 2 J N e V J 1 J 2 J N 8 1 8 2 8 N displaystyle H left J 1 J 2 J N right H 0 left J 1 J 2 J N right varepsilon V left J 1 J 2 J N theta 1 theta 2 theta N right de nezburena funkciya Gamiltona zadovilnyaye umovu nevirodzhenosti det w n J m det 2 H 0 J m J n 0 m n 1 2 N displaystyle det left left frac partial omega n partial J m right right det left left frac partial 2 H 0 partial J m partial J n right right neq 0 m n 1 2 N a parametr zburennya ye dostatno malim e lt e 0 1 displaystyle varepsilon lt varepsilon 0 ll 1 to deyaki z invariantnih toriv deformuyutsya v toj chas yak inshi rujnuyutsya Vizhivayut ti tori yaki mayut dostatno irracionalni chastoti ce tverdzhennya nazivayetsya umovoyu nerezonansnosti dlya N 2 displaystyle N 2 cya umova maye viglyad w 1 w 2 p q gt k e q 5 2 k e 0 0 displaystyle left frac omega 1 omega 2 frac p q right gt frac k varepsilon q 5 2 k varepsilon rightarrow 0 rightarrow 0 de p q cili vzayemno prosti chisla Ce oznachaye sho ruh zalishayetsya kvaziperiodichnim iz zminenimi nezalezhnimi periodami yak naslidok umovi nerezonansnosti i trayektoriyi shilno obmotuyut tori sho vizhili Kilkist zrujnovanih toriv pryamuye do nulya pri e 0 displaystyle varepsilon to 0 Vazhlivim naslidkom teoremi KAM ye toj fakt sho dlya velikogo naboru pochatkovih umov ruh prodovzhuye buti kvaziperiodichnim neskinchenno dovgo Pri dostatno velikomu e displaystyle varepsilon zburennya rujnuye vsi tori pri chomu u chastinnomu vipadku N 2 ostannim rujnuyetsya tor z najbilsh iracionalnim spivvidnoshennyam chastot w 1 w 2 5 1 2 displaystyle omega 1 omega 2 sqrt 5 1 2 NaslidkiMetodi rozrobleni Kolmogorovim Arnoldom ta Mozerom pererosli u velikij obsyag rezultativ sho zaraz nosyat nazvu Teoriyi KAM Zokrema yih bulo rozshireno na negamiltonovi sistemi ta neperturbativni vipadki Umovu nerezonansnosti ta nevirodzhenosti teoremi KAM staye dedali vazhche zadovolniti pri zbilshenni stupeniv vilnosti sistemi Pri zbilshenni rozmirnosti ob yem fazovogo prostoru zajnyatij torami zmenshuyetsya Pri N 2 displaystyle N 2 tori sho vidpovidayut riznim znachennyam dij J n displaystyle J n ye vkladenimi odin v odin i ne peretinayutsya V takomu vipadku govoryat sho tori dilyat fazovij prostir Zrujnovani tori zalishayutsya zatisnenimi mizh stijkimi torami Tomu fazovi trayektoriyi sho znahodyatsya v oblasti zrujnovanih toriv obmezheni Oskilki v 2 N displaystyle 2N vimirnomu fazovomu prostori poverhnya staloyi energiyi maye rozmirnist 2 N 1 displaystyle 2N 1 a mezhi sho dilyat yiyi na rizni oblasti mayut rozmirnist 2 N 2 displaystyle 2N 2 to yaksho tori dilyat prostir to yihnya rozmirnist povinna zadovilnyati nerivnosti N 2 N 2 displaystyle N geqslant 2N 2 sho prizvodit do umovi N 2 displaystyle N leqslant 2 Pri N gt 2 displaystyle N gt 2 tori ne dilyat prostir i peretinayutsya Chastini riznih zrujnovanih toriv utvoryuyut skladnu merezhu kanaliv u fazovomu prostori Vzdovzh cih kanaliv zburena trayektoriya mozhe viddalyatisya vid oblasti neobmezhenogo ruhu neskinchenno daleko Ce yavishe nazivayetsya PosilannyaA N Kolmogorov On the conservation of conditionally periodic motions for a small change in Hamilton s function Dokl Akad Nauk SSSR 1954 T 98 S 527 530 V I Arnol d Proof of a theorem by A N Kolmogorov on the invariance of quasi periodic motions under small perturbations of the Hamiltonian Russian Math Surveys 1963 T 18 vip 5 S 9 36 DOI 10 1070 RM1963v018n05ABEH004130 z dzherela 12 bereznya 2022 H G Schuster W Just 2005 Deterministic Chaos anglijska Weinheim Wiley VCH ISBN 3 527 40415 5 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite book title Shablon Cite book cite book a Cite maye pusti nevidomi parametri pubrik posilannya avtorlink pubdata glavalink ta glava dovidka LiteraturaIro G Klasichna mehanika L LNU im Ivana Franka 1999 464 s Zaslavskij G M Gamiltonov haos i fraktalnaya dinamika Izhevsk RHD 2010 472 s Kapeller T Pyoshl Yu KdF i KAM Izhevsk RHD 2008 360 s Mozer Yu KAM teoriya i problemy ustojchivosti Izhevsk RHD 2001 448 s de la Yave R Vvedenie v KAM teoriyu Izhevsk IKI 2003 176 s angl original Poschel J 2001 A lecture on the classical KAM theorem PDF Proceedings of Symposia in Pure Mathematics AMS 69 707 732 KAM theory the legacy of Kolmogorov s 1954 paper
Топ